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This paper derives the structure of Prime numbers from First Principles and explains 
how the structure causes the Prime Number Theorem. Factorisation algorithms are 
derived and a Prime Number Generator investigated.

Every problem contains within itself the seeds of its own solution.--Stanley Arnold

Discussion
Complexity Theory has shown that simple systems, when combined, can have complex 
consequences. This is the case with Prime numbers. For thousands of years Prime numbers have 
tantalised mathematicians with their possible hidden structure. In some respects they appear 
structured, (Riemann’s Hypothesis, Prime Sums), in others they so lack a structure that we question 
whether they aren’t some form of randomness (Prime Counting Function, Prime Gap).

While reading a biography of Paul Erdos [Hoffman 1998 (1)] I was inspired to work through 
Euclid's Proof of the Infinitude of Primes [Hoffman 1998 (2)] and realised that the Proof could be 
generalised in a number of ways. Investigating these General Forms I found an equation which 
appeared to be a Prime Number Pair Generator. Further General Forms produced Composites as 
well as Primes and acted as a Factorisation equation. While trying to understand why some General 
Forms also generated Composites I discovered the structure of Prime numbers. Refer to Section 6 of 
this paper for the details of these Generalisations

In Section 1, I show that Prime numbers are structured, and form the starting points of Composite 
strands in a Lattice-like structure of Composite numbers over the Integers, ℤ .  I show how this 
structure may be derived from First Principles and formally describe this structure in the
Fundamental Theorem of Primes:

All Integers are members of only one of the sets:
– Prime Base, B = {±P1, ±P2} = {-3, -2, 2, 3}
– Subtractive Primes, PS, of the form 2.3.n - 1, n∈ℤ
– Additive Primes, PA, of the form 2.3.n + 1, n∈ℤ
– Composites of the forms 2.n, 3.n, n∈ℤ , |n| ≠ 1, ie Multiples of 2 and/or 3, includes 0
– Composites, of the form 2.3.n ± 1, n∈ℤ , ie Multiples of Primes other than 2 or 3

Subsequent sections, explain why the Prime Number Theorem holds, derive Factorisation 
algorithms from the Prime structure, demonstrate multiplication relationships, extend the Prime 
structure into other domains, detail the research into a Prime Number Generator which lead me to 
discover the Prime Structure, and examine Symmetric Prime Lattices.

As per common practice, [Ingham, 1932] and [Jameson, 2003], “1” will be considered as neither 
Prime nor Composite.

I will use both Product, П, and Primorial, Pi#, notation in equations, where Pn #=∏
i

1

n
P i ,  such that 

(st) Pi is the ith positive Prime, P1=2, P2=3, P3=5, P4=7, ...
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Section 1: Structure of Primes over ℤ
Definition: Prime Number

Let P∈ℤ . We say that P is Prime if its only (+)ve divisors are 1 and |P|

Theorem 1: Euclid's Theorem of the Infinitude of Primes:
There are an infinite number of Primes

From Euclid's Proof of the Infinitude of Primes, cf Appendix A, we know that the equation
Q=∏

i
1

n
Pi±1

can be used to prove that there are an infinite number of Primes. This paper demonstrates how the 
structure of Prime Numbers can be derived from this equation.

Theorem 2: Fundamental Theorem of Arithmetic
Any positive integer can be expressed uniquely as a product of primes, ignoring ordering of 
prime factors within the expression.

This theorem is also known as the Unique Factorization Theorem. [Hardy and Wright 1979] 
[Weisstein (1)]

Theorem 3: Odd Primes
All prime numbers ±Pi, other than ±2, are odd, ie are of the form ±Pi=2.n ± 1, n∈ℤ

Proof:
For n∈ℤ
The Prime number 11 may be expressed in the form Pi=2.n ± 1, n=5 or 6
The Prime number 61 may be expressed in the form Pi=2.n ± 1, n=30 or 31
The Prime number -11 may be expressed in the form -Pi=2.n ± 1, n=-5 or -6
The Prime number -61 may be expressed in the form -Pi=2.n ± 1, n=-30 or -31
Therefore there exist Primes of the form ±Pi=2.n ± 1

From modulo arithmetic we know that all integers can be expressed in the form z=2n ± r, 
where r=0, 1

z=2n ± 0 = 2n  is even, ie divisible by two, thus either z=±2 or z is a multiple of 2

z=2.n ± 1  is odd, ie is not divisible by 2
All prime numbers ±Pi, other than ±P2, are indivisible by 2 or they would be Composite with 
a factor of 2 and therefore not Prime

Therefore all Prime Numbers, other than ±2, are of the form ±Pi=2.n ± 1, n∈ℤ

While it can be shown that all Primes, other than 3, are of the form ±Pi=3.n ± 1, n is even for every 
Prime other than ±P1=±2, the case when n=±1. It can be argued that such a theorem is implicitly 
about 2x3, = P2#

Theorem 4: Additive and Subtractive Prime sets
All prime numbers ±Pi, other than ±2 and ±3, are of the form ±Pi = (2.3.n) ± 1 = n.P2# ± 1,

n∈ℤ. ±Pi = n.P2# - 1 are termed Subtractive Primes, ±Pi = n.P2# + 1 are Additive Primes
Proof:

For n∈ℤ
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The Primes 5 and 47 are of the form  n.P2# - 1, n=1 and 8 respectively
The Primes 7 and 37 are of the form  n.P2# + 1, n=1 and 6 respectively
The Primes -5 and -47 are of the form  n.P2# + 1, n=-1 and -8 respectively
The Primes -7 and -37 are of the form  n.P2# - 1, n=-1 and -6 respectively
Therefore there exist Primes of the forms, ±Pi= n.P2# ± 1, n∈ℤ

From modulo arithmetic we know that all integers can be expressed in the form z=(6.n) ± r, 
where r=0, 1, 2, 3

If r=0, then z= 6n = (2.3.n) and is divisible by both ±2 and ±3
If r=2, then z= 6n ± 2 = 2.(3.n ± 1) and is divisible by ±2. If n=0, r=2, then z=±2
If r=3, then z= 6n ± 3 = 3.(2.n ± 1) and is divisible by ±3. If n=0, r=3, then z=±3

If r=1, then z= 6n ± 1 = (2.3.n) ± 1 and is indivisible by both 2 and 3
All prime numbers ±Pi, other than ±P1 and ±P2, are indivisible by both ±2 and ±3

Therefore all prime numbers, other than ±2 and ±3, are of the form ±Pi=(2.3.n) ± 1, n∈ℤ

Theorem 4 may be extended to address all Primes

Theorem 5: Prime Real Form
All Prime numbers are Integers of the form ±Pi = (2.3.r) ± 1 = r.P2# ± 1, r∈ℝ

Proof:
For all Prime Integers other than ±2 or ±3 refer to the Theorem of Additive and Subtractive 
Prime sets. For these Primes, r is restricted to integer values, r=n∈ℤ

For±P0=±1, r=±1
3

,  or  r = 0

For±P1=±2, r=±1
2

,  or  r=±1
2.3

For±P2=±3, r=±1
3

,  or  r=±2
3

Therefore, all Prime numbers are Integers of the form ±Pi = (2.3.r) ± 1 = r.P2# ± 1, r∈ℝ

Theorem 6:
There exist prime numbers ±Pi, other than ±2, ±3 and ±5, which are not of the form

±Pi=(n.P3#) ± 1, n∈ℤ

Proof:
From modulo arithmetic we know that all integers can be expressed in the form z=(30.n) ± r, 
where r=0, 1, 2, ... , 15, n∈ℤ

The Primes 23 and 173 are of the form ( n.P3# ) - 7, n=1 and 6 respectively
The Primes 41 and 251 are of the form ( n.P3# ) + 11, n=1 and 8 respectively
The Primes -23 and -173 are of the form -( n.P3# ) + 7, n=1 and 6 respectively
The Primes -41 and -251 are of the form -( n.P3# ) - 11, n=1 and 8 respectively

Therefore there exist Primes, other than ±2, ±3 and ±5, which are not of the form
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±Pi=(n.P3#) ± 1, n∈ℤ

What is the significance of the different outcomes when comparing Theorems 4 and 6 ?

The first 5 negative, and the first 32 positive, Primes in standard representation
-7, -5, -3, -2, -1, 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 
89, 97, 101, 103, 107, 109, 113, 127

The sample of Primes extended and expressed in light of Theorem 4 in a Modulo 6 grid 
representation.

3(2n-1) 2(3n-1) 6n-1 6n 6n+1 2(3n+1) 3(2n+1)
… … …

… … -(5x5) -(2x3)x4 -23 …
… … -19 -(2x3)x3 -17 …

-(3x5) -(2x7) -13 -(2x3)x2 -11 -(2x5)
-(3x3) -(2x4) -7 -(2x3) -5 -(2x2)
-3 -2 -1 0 1 2 3

2x2 5 2x3 7 2x4 3x3
2x5 11 2x3x2 13 2x7 3x5
… 17 2x3x3 19 … …
… 23 2x3x4 5x5 … …

29 2x3x5 31
5x7 2x3x6 37
41 2x3x7 43
47 2x3x8 7x7
53 2x3x9 5x11
59 2x3x10 61
5x13 2x3x11 67
71 2x3x12 73
7x11 2x3x13 79
83 2x3x14 5x17
89 2x3x15 7x13
5x19 2x3x16 97
101 2x3x17 103
107 2x3x18 109
113 2x3x19 5x23
7x17 2x3x20 11x11
5x5x5 2x3x21 127
… … …
173 2x3x29 5x5x7
… … …

13x29 2x3x63 379
383 2x3x64 5x7x11
389 2x3x65 17x23
… … …

Table 1-1: “Integers modulo 6”

This gives a new way of looking at Theorem 4, using the Fundamental Theorem of Arithmetic. 
There is a Lattice-like structure of Composite strands over ℤ with Prime numbers at the base of 
each strand. This structure shows more clearly if we leave out the Composite strands of 2n and 3n,

n∈ℤ , and restrict ourselves to composite strands over the set {6n ± 1}, where the strands are 
z=x.Pi, for all Primes Pi >3 and all integers x in {6n ± 1}
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Figure 1-1 shows stylised representations of the Composite strands over the set {6n ± 1} for the 
range [-31, 187]. Also, it does not include the Composite strands of 2 and 3. Each horizontal unit is 
of size 1. Each vertical unit is of size 6 and is referred to as a unit of size K, due to the PC Key 
function, K(r), defined below. For clarity I have only included strands for n=0, ±1, ±2, ±3, ±4.

From left to right the graphs are Composite strands of:
{6n -1},
{6n ± 1},
{6n +1},
5 and 25       {all intersections with {6n±1} of the strand of 25 overlap with the strand of 5}
5 and 7,
11 and 13
17 and 19
23 and 25

Just plotting these few strands shows part of why it has been so difficult to find the Structure of 
Primes over ℤ ; Primes are indirectly related, and are the result of gaps in the Composite weave 
of smaller Primes

The Fundamental Theorem of Primes follows clearly from Theorem 4 and its Lattice structure of 
Composite Strands.

Theorem 7: Fundamental Theorem of Primes
All Integers are members of only one of the sets:
– Prime Base, B = {±P1, ±P2} = {-3, -2, 2, 3}
– Subtractive Primes, PS, of the form 2.3.n - 1, n∈ℤ
– Additive Primes, PA, of the form 2.3.n + 1, n∈ℤ
– Composites of the forms 2.n, 3.n, n∈ℤ , |n| ≠ 1, ie Multiples of 2 and/or 3, includes 0
– Composites, of the form 2.3.n ± 1, n∈ℤ , ie Multiples of Primes other than 2 or 3

I term the set, {6n ± 1}, the Prime Candidates (PC), P .
As Primes form the basis for this Lattice structure of Composite strands, I shall formally refer to it 
as the “Prime Lattice”.
n is the Prime Candidates (PC) Integer Key value.
r, from the Prime Real Form Theorem, is the PC Real Key value
The Prime numbers, P are a subset of the union of B and P .

P ⊂ B ∪ P = B ∪ S ∪ A such that

B = { ±2, ±3 }
S = 6n – 1 , n∈ℤ
A = 6n + 1 , n∈ℤ

where B is the Prime Base set, S is the Subtractive Prime Candidates set and A is the 
Additive Prime Candidates set

Integers that are not elements of P are multiples of 2 and/or 3, ie other than ±2 and ±3, such integers 
are not candidates for being Prime numbers. Any Integers in P are candidates for testing when 
searching for Primes and as such are termed Prime Candidates.
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The Theorem of Prime Candidate Holes is a corollary to the Fundamental Theorem of Primes, and 
follows clearly, by observation, from Table 1-1 and Figure 1-1

Theorem 8: Prime Candidate Holes
x = 6n ± 1 is Prime iff it is not the intersection of a Composite strand of a smaller Prime 
Candidate, x' = 6m ± 1, with the Prime Candidate Set, ∀ n,m∈ℤ ,0∣m∣∣n∣

This is really just the Sieve of Eratosthenes restricted to the Prime Candidate set and can be 
equivalently stated as:

Theorem 9: Prime PCs
x = 6n ± 1 is Prime iff it is not the product of a smaller Prime Candidate, x' = 6m ± 1,
∀ n,m∈ℤ ,0∣m∣∣n∣

Let Pi
± be the ith Subtractive or Additive Prime Candidate, Pi

± = 6i ± 1, Pi
- = 6i – 1, Pi

+ = 6i + 1, 
i∈ℤ .

Define the PC Key function K( r ) st

1)   K r =⌊
r1

6
⌋ , r∈ℝ , r≥0

2)   K  r=⌈
 r−1

6
⌉ , r∈ℝ–

Therefore, ∀ i∈ℕ ,
K(Pi

– ) = i
K(Pi

+ ) = i
K(Pi

± ) = i

K( r ) is the “distance” of r from zero in terms of Prime Candidate Integer Key values

Define the Inverse PC Key function P±( r ) st
1)   P+ r=6 ⌊r⌋1 , r∈ℝ , r≥0
2)   P – r =6⌊r ⌋−1 , r∈ℝ , r≥0
1)   P+ r=6 ⌈r⌉1 , r∈ℝ–

2)   P – r =6⌈r ⌉−1 , r∈ℝ–

Therefore, ∀ i∈ℕ ,
P–( i ) = Pi

– 
P+( i ) = Pi

+ 
P±( i ) = Pi

± 

For PC Key value of 0, P0
– = –1,  P0

+ = 1
P0

– x P0
– = P0

+ , ie  -1x-1=1 ∈ A 
P0

+ x P0
– = P0

– , ie  1x-1=-1 ∈ S 
As mentioned at the start of this paper, it is common practice, [Ingham, 1932] and [Jameson, 2003], 
that 1 is considered as neither Prime nor Composite. Now I extend that to include -1, as P0

± will be 
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considered as neither Prime nor Composite.

Set Properties of the Prime Candidates, P 
Let B x P denote the Composite set generated by multiplying b x p , ∀ b∈B , ∀p∈P
ℤ= {2n, 3n} ∪ P , n∈ℤ ,

{2n, 3n} ∩ {S ∪ A} = {}, n∈ℤ

B x P ⊄ P 
S x S ⊂ A 
A x A ⊂ A 
S x A ⊂ S 
S = -1 x A 
A = -1 x S 

{S x S } ∩ {A x A } ≠ {}
{S x S } ∪ {A x A } ∪ PA = A, by the Fundamental Theorems of Primes, and of Arithmetic
{S x A } ∪ PS = S, by the Fundamental Theorems of Primes, and of Arithmetic

Intersection of Composite Strands with 6n±1
Where will the Composite strand of Subtractive Prime Candidate (6n-1) intersect with the 
Subtractive Prime Candidates (6c-1) ? Let us restrict ourselves for the moment to (+)ve PCs, 
WLOG

The answer can be determined in a number of ways. Using the PC Lattice structure and then 
generalising,

(6.0-1) = -1 Starting Position for n=0, (6x0-1) = -1
(6.1-1) = 5 Starting Position for n=1, (6x1-1) = 5
(6.2-1) = 11 Starting Position for n=2, (6x2-1) = 11
(6.3-1) = 17
(6.4-1) = 23
(6.5-1) = 29
(6.6-1) = 35 First Intersection for strand of n=1, (6x(1+5)-1) = 6x6 -1 = 36 -1
(6.7-1) = 41
(6.8-1) = 47
(6.9-1) = 53
(6.10-1) = 59
(6.11-1) = 65 Second Intersection for strand n=1, (6x(1+2x5)-1) = 6x11 -1 = 66 -1
(6.12-1) = 71
(6.13-1) = 77 First Intersection for strand n=2, (6x(2+11)-1) = 6x13 -1 = 78 -1
(6.14-1) = 83
(6.15-1) = 89
(6.16-1) = 95 Third Intersection for strand n=1, (6x(1+3x5)-1) = 6x16 -1 = 96 -1

Subtractive PC 6n-1, with PC Key value n, intersects with the Subtractive PCs at
6n -1
6(n+(6n-1)) -1
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6(n+2(6n-1)) -1
...
6c-1 = 6(n+m(6n-1)) -1

= 6n + 6m(6n-1) -1
= 6m(6n-1) + (6n -1)
= (6m+1) (6n-1)

Generalising; any Subtractive Prime Candidate Composite strand, (6n-1), will intersect with the 
Subtractive Prime Candidates at Additive Prime Candidate multiples, (6c-1) = (6n-1)(6m+1).

For Pn
- = 6n – 1,
6c-1 = (6n – 1) (6m+1)

= 6mPn
- + 6n – 1

= 6( mPn
- + n ) – 1

c = mPn
- + n [ = –( mP–n

+ + (–n)) ]

It follows that any Additive Prime Candidate Composite strand, (6m+1), will intersect with the 
Subtractive Prime Candidates at Subtractive Prime Candidate multiples, (6c-1) = (6n-1)(6m+1).

For Pm
+ = 6m + 1,
6c-1 = (6m + 1) (6n–1)

= 6nPm
+ – 6m – 1

= 6 ( nPm
+ – m ) – 1

c = nPm
+ – m [ = –( nP–m

- – (–m)) ]

Any Subtractive Prime Candidate Composite strand, (6n-1), will intersect with the Additive Prime 
Candidates at Subtractive Prime Candidate multiples, (6c+1) = (6n-1)(6m-1).

For Pn
- = 6n – 1,
6c+1 = (6n – 1) (6m-1)

= 6mPn
- – 6n + 1

= 6( mPn
- – n ) + 1

c = mPn
- – n [ = –( mP–n

+ – (–n)) ]

Any Additive Prime Candidate Composite strand, (6n-1), will intersect with the Additive Prime 
Candidates at Additive Prime Candidate multiples, (6c+1) = (6n+1)(6m+1).

For Pm
+ = 6m + 1,
6c+1 = (6m + 1) (6n+1)

= 6nPm
+ + 6m + 1

= 6( nPm
+ + m ) + 1

c = nPm
+ + m [ = –( nP–m

- + (–m)) ]
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Section 2: Prime Density and the Prime Number Theorem
The Prime Number Theorem approximates the number of primes that are less than a given number n 
[Ingham 1932] [Jameson 2003] [Weisstein (2)]

Theorem 10: Prime Number Theorem
The number of primes that are less than a given number n is approximately n/ln(n),

n≈
n

ln n

It's clear now why the density of Prime Numbers decreases as n increases; the Prime Candidate 
Strands (multiples) of Pn

± intersect with the Prime Candidate Set and prevent a Prime Candidate 
from being Prime, resulting in fewer Prime Candidate Holes as z increases. Euclid's Proof though, 
shows that existing Composite strands do not fill all of the Prime Candidate Set but instead must 
always leave Prime Holes forming the start of new Composite strands over P 

While this cause is straightforward, its effect is not. Attempts to calculate the Number of Primes by 
Combinatorial methods based on this structure are quickly affected by Complexity Theory. This 
simple structure has quite tangled results

We shall restrict ourselves to the (+)ve Intergers and disregard PC Integer Key value 0 as P0
+=1 is 

considered to be neither Prime nor Composite and does not generate Composite Prime Candidates, 
cf Section 1:The Structure of Primes over ℤ

For each (+)ve integer c there will be:
4c-2 Composite (+)ve multiples of 2 and/or 3 which are less than PC

+= 6c+1

c (+)ve Subtractive PCs less than or equal to PC
– 

c (+)ve Additive PCs less than or equal to PC
+, and greater than P0

+

ie ∃ c Pi
– and c Pi

+ st 0 < i ≤ c

K(6c±1) = c, where K is the PC Integer Key Function

The smallest Subtractive PC that generates Composite PCs is P1
–=5

The smallest Additive PC that generates Composite PCs is P1
+=7

If P1
– generates a Composite PC, PZ

±, less than or equal to 6c-1 then there must be a PC co-factor, 
PF1–± ,  st

PZ
± = P1

± x PF1–± 

K PF1–
± =K 

Pc
±

5


There are two (+)ve PCs for each PC Integer Key value. 5x1 is Prime, so there are approximately 
2xK( PF1–

± ) –1 Composite PC products of 5 that are less than, or equal to, PC
+ 

If P1
+ generates a Composite PC, PY

±, less than or equal to 6c-1 then there must be a PC co-factor, 
PF1+

± ,  st
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K PF1+
± =K 

Pc
±

7


There are two (+)ve PCs for each PC Integer Key value. 7x1 is Prime, 7x5 is an overlap with the 
composites of 5, so there are approximately 2xK( PF1+

± ) -2 Composite PC products of 7 that are 
less than, or equal to, PC

+ and have not already been counted
PF1–

± is the largest PC which generates Composite PCs less than or equal to PC
+ , but its PC co–

factor, 5, has already been counted. Similarly, PF1+
± has the co-factor 7 which has already been 

counted

We would then proceed to repeat the above arguments for each Composite strand in turn

If P2
– generates a Composite PC, PX

±, less than or equal to 6c-1 then there must be a PC co-factor, 
PF2–

± ,  st

K PF2–
± =K 

Pc
±

11


11x1 is Prime, 11x5 and 11x7 are overlaps with the composites of 5 and 7, so there are 
approximately 2xK( PF1–± ) -3 Composite PC products of 7 that are less than, or equal to, PC

+ and 
have not already been counted

This then becomes the basis for the algorithm of a sieve for working out the number of Composites 
less than PC

+ and then subtracting that quantity from the 2c Prime Candidates in question. This 
algorithm demonstrates the validity of the Prime Structure and opens up further areas of 
investigation. As an approximation to the Number of Composites less than PC

+ , though, it is a 
resource intensive approach that proves infeasible for large numbers.

From Figure 1-1 we can see that every PC product of 25 is also a product of 5. Similarly, 35 
intersects with the Prime Candidates every time the strands of 5 and 7 intersect with the same PC. 
49 doubles up with 7, 1001 overlaps with the strands of 7, 11 and 13; etc. Thus the algorithm would 
need to identify, and discard, Composite PC strands as any Composite PCs generated by them have 
already been counted against the strands of their prime sub-factors. This requires resources to 
remember Primes found so far and to work out whether a strand is composite as one of the first 
steps in each iteration of this algorithm

An alternative approach, Plateaus at Powers of P
Another way to approach this problem is based on the Unique Factorisation Theorem with plateaus 
at powers of the first Prime Candidate, 5. Considering (+)ve Powers of 5:

51 = 5 2 Primes < 5
52 = 25 7 Primes between 5 & 25 inclusive
53 = 125 21 Primes between 25 & 125 inclusive, 21=7x3
54 = 625 84 Primes between 125 & 625 inclusive, 84=7x3x4
55 = 3,125
56 = 15,625
57 = 78,125
58 = 390,625
59 = 1,953,125
510 = 9,765,625
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5  1   = 5  
1xP=P, therefore 1 does not generate Composite PCs
There are 2 Primes less than 5: 2 and 3

5  2   = 25  
5 is the smallest Prime PC that generates Composite PCs and 5x5 is the smallest Composite Prime 
PC
There are no multiples of PCs which have Product less than 25
25 is additive & K(25) =4, therefore there are 2x4 -1=7 Prime PCs less than 25
Thus, there are 7 Prime PCs less than 25, for a total of 9 Primes less than 25

5  3   = 125  
5x5x5=125 is smallest Composite Prime PC with 3 PC factors
125 is Subtractive & K(125)=21, therefore there are, at most, 2x(21-1-4)=32 Prime PCs strictly 
between 25 & 125, non-inclusive
Taking the 6 PCs between 5 and 25, 5<P<25 => 25<5xP<125, therefore 6 more Composites, ie 
there are at most 26 Prime PCs in this range

7x5=35<125
7x17=119<125
7x19=133>125
17 is subtractive & K(17)=3, thus 2x3-1-1=4 more Composites (5P has already been counted)
ie between 7 & 28 Primes<125

11x11=121<125
Thus 1 more Composite
Therefore

5  4   = 625  

5  5   = 3125  

Base Power
51 5
51 25
51 125
51 625
51 3125
51 
51 
51 
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Section 3: Factoring Composites
In this Section Prime Factorisation equations are derived from the structure of Primes.

ℤ= {2n, 3n} ∪ S ∪ A , n∈ℤ  
Composite strands of ±2 and ±3 do not intersect with the Prime Candidates

Derivation of the Factorisation equations
Subtractive Prime Candidates are of the form 6c-1. IF 6c-1 is not Prime then 6c-1 = (6n-1)(6m+1) 
has non-trivial Integer solutions for all 3 PC Key values c, n, m.

Solving for PC Key value m
From the “Intersection of Composite Strands with 6n±1”, above

c = mPn
- + n

m (6n-1) = c-n

m=
c−n

6n−1

IF (6c-1) is a multiple of (6n-1) then (c-n) is a multiple of (6n-1) and
(c-n)  mod  (6n-1)  ≡  0
c  mod  (6n-1)  ≡  n

6c-1  mod  (6n-1)  ≡  0
6c  mod  (6n-1)  ≡  1

Also, IF (c-n) is NOT a multiple of (6n-1) then (6c-1) is NOT a multiple of (6n-1) and
(c-n)  mod  (6n-1)  ≠  0
c  mod  (6n-1)  ≠  n
6c-1  mod  (6n-1)  ≠  0
6c  mod  (6n-1)  ≠  1

Solving for PC Key value n
From the “Intersection of Composite Strands with 6n±1”, above

c = nPm
+ – m

n (6m+1) = c+m

n=
cm

6m1

IF (6c-1) is a multiple of (6m+1) then (c+m) is a multiple of (6m+1) and
(c+m)  mod  (6m+1)  ≡  0
c  mod  (6m+1)  ≡  -m

6c-1  mod  (6m+1)  ≡  0
6c  mod  (6m+1)  ≡  1

Also, IF (c+m) is NOT a multiple of (6m+1) then (6c-1) is NOT a multiple of (6m+1) and
(c+m)  mod  (6m+1)  ≠  0
c  mod  (6m+1)  ≠  -m
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6c-1  mod  (6m+1)  ≠  0
6c  mod  (6m+1)  ≠  1

Additive Prime Candidates are of the form 6c+1. IF 6c+1 is not Prime then either
1) 6c+1 = (6n-1)(6m-1), or,
2) 6c+1 = (6n+1)(6m+1)
have non-trivial Integer solutions for all 3 PC Key values c, n, m.
In each case we need only solve for one term, n or m, WLOG

Case 1) Product of Subtractive Prime Candidates: Solving for PC Key value m
From the “Intersection of Composite Strands with 6n±1”, above

c = mPn
- – n

m (6n-1) = c+n

m=
cn

6n−1

IF (6c+1) is a multiple of (6n-1) then (c+n) is a multiple of (6n-1) and
(c+n)  mod  (6n-1)  ≡  0
c  mod  (6n-1)  ≡  -n

6c-1  mod  (6n-1)  ≡  0
6c  mod  (6n-1)  ≡  1

Also, IF (c+n) is NOT a multiple of (6n-1) then (6c+1) is NOT a multiple of (6n-1) and
(c+n)  mod  (6n-1)  ≠  0
c  mod  (6n-1)  ≠  -n
6c-1  mod  (6n-1)  ≠  0
6c  mod  (6n-1)  ≠  1

Case 2) Product of Additive Prime Candidates: Solving for PC Key value n
From the “Intersection of Composite Strands with 6n±1”, above

c = nPm
+ + m

n (6m+1) = c-m

n=
c−m

6m1

IF (6c+1) is a multiple of (6m+1) then (c-m) is a multiple of (6m+1) and
(c-m)  mod  (6m+1)  ≡  0
c  mod  (6m+1)  ≡  m

6c+1  mod  (6m+1)  ≡  0
6c  mod  (6m+1)  ≡  -1

Also, IF (c-m) is NOT a multiple of (6m+1) then (6c+1) is NOT a multiple of (6m+1) and
(c-m)  mod  (6m+1)  ≠  0
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c  mod  (6m+1)  ≠  m
6c+1  mod  (6m+1)  ≠  0
6c  mod  (6m+1)  ≠  -1

Note: Pn
± and Pm

± may be themselves be Composite Prime Candidates for some, but not all, values 
of n and m. There must be at least one n and m for which these PCs are not Composite, even if it is 
for PC Key values of 1 and C

The symmetry in the equations for n and m is because
S = -1 x A , 6n-1 = -1 x (6(-n) + 1 )
A = -1 x S , 6m+1 = -1 x (6(-m) – 1)

Selecting Initial PC Key values
For any positive Integer, z=x . y, WLOG,   x≤√z   and   y≥√z 

For any positive Composite Subtractive Prime Candidate, z = 6c-1
z = (6n-1)(6m+1),   (6n-1) ≠ (6m+1),

so either,
6n−16c−1    and   6m16c−1 ,

n≤⌊
16c−1

6
⌋ 

1
6
6c

6
 1⌈ c

6
⌉

Set n  to oneof the3values above
or

6m16c−1    and   6n−16c−1 ,

m≤⌊
6c−1−1

6
⌋  6c

6
≤ ⌈c

6
⌉

Set m  to oneof the3 values above

As we don't know which value is less, n or m, we need to test against both. It would 
be safe to initialise m to n, as the initial bound for n is approximately one greater than 
for m

For any positive Composite Additive Prime Candidate, z = 6c+1,
z = (6n-1)(6m-1),   (6n-1) ≤√z   WLOG, 

or
z = (6n+1)(6m+1),   (6m+1) ≤√z   WLOG, 

so either,
6m−1≤6c1 , WLOG

m≤⌊
16c1

6
⌋ 

1
6


6c1
6

≤ 1⌈ c
6

⌉

Set m  to oneof the3values above
or

6n1≤6c1 , WLOG

n≤⌊
6c1−1

6
⌋ ≤ 6c

6
≤ ⌈ c

6
⌉

Set n  to oneof the3values above
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As we don't know whether z is the product of Additive or Subtractive Prime Candidates, we 
need to test against both n and m. It would be safe to initialise n to m, as the initial bound for 
m is approximately one greater than for n

Initial PC Key value ==1⌈c
6

⌉

In both cases, factoring a Subtractive or an Additive PC, one can safely use this value as the 
Initial PC Key value

Structured Factorisation Algorithm
To factorise z∈ℤ  into factors z=−1E1 .2E2 .3E 3 . 5E4 .... . Pi

E i

1) If z is negative then E1=1. Set z to positive, z=|z|  Otherwise E1=0.

2) While z is odd divide z by 2 until the result is odd to obtain E2, the Power to which 2 is a factor 
of z

3) Divide z by 3 until z is indivisible by 3 to obtain E3 

4) At this stage z is without factors of 2 or 3 and thus is a Prime Candidate.
If z=1 then

Finished, z=−1E1 . 2E2 . 3E3

Else
Solve z modulo 6 to see whether z is a Subtractive (z=6c-1), or an Additive (z=6c+1) Prime 

Candidate
Note: In practice it may be faster to solve for z+1 or z-1

5) Solve for PC Key value c,
Subtractive PC c=(z+1)/6
Additive PC c=(z-1)/6

Note: In practice Steps 4 and 5 would be merged

Select the required pair of Factorisation equations from one of the three variations below.

Implementation z = 6c - 1 z = 6c + 1

Division
m=

c−n
6n−1

n=
cm
6m1

m=
cn

6n−1

n=
c−m
6m1

1st Modulo (%) (c-n) % (6n-1) = 0

(c+m) % (6m+1) = 0

(c+n) % (6n-1) = 0

(c-m) % (6m+1) = 0
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Implementation z = 6c - 1 z = 6c + 1
2nd Modulo (%) c % (6n-1) = n

c % (6m+1) = -m

c % (6n-1) = -n

c % (6m+1) = m

Note:

c % (6m+1) = -m = (c-m) % (6m+1)

c % (6n-1) = -n = (c-n) % (6n-1)

6) Set n and m to the initial Prime Candidate Key Values,

Initial PC Key value ==1⌈c
6

⌉

7) Solve the selected implementation for m and n
8) Decrement m and n

9) Repeat from Step 7 until either:
solved for an integral n or m, the first solution, (which may be composites)

or
n = m = 0, all solutions

The above algorithms require iteration through possible solutions in the hope that integer solutions 
are found. When factoring a Prime number, P, only the trivial solutions will be found, n=0 or m=0 
giving ±1, ±P. With large numbers, such as RSA-640 [RSA], we would need a massive number of 
iterations. Fortunately, these algorithms do allow massively parallel implementations, unfortunately, 
they are still a comparatively slow process.

For the equations K=
c±n
6n±1

,

Over X computers, the ith computer, 0<i<X, would evaluate the range

n∈[  i−1. ⌈ 
X

⌉1,   i. ⌈ 
X

⌉  ]

The Xth computer need only evaluate

n∈[   X −1 .⌈ 
X

⌉1,     ]

Name: RSA-640
Digits: 193
Digit Sum: 806
31074182404900437213507500358885679300373460228427275457201619488232064405180815
04556346829671723286782437916272838033415471073108501919548529007337724822783525
742386454014691736602477652346609

Refer Appendix B for an implementation for factoring (6c-1)
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Further Investigation into Factorisation Algorithms
A major issue with the above Factorisation Algorithm is that it is iterative and not direct. I have not 
been able to find a direct method of Factorisation, but have investigated other iterative algorithms.

Lemma 1: Prime Candidate Expansion
All Prime Candidates, 6n -1 or 6m +1, may be expressed in the form 6a ±6b -1 or 6c ±6d +1, 
respectively, where a ±b = n, c ±d = m a ,b∈ℤ

Factoring Subtractive Prime Candidates
As stated previously, Subtractive PCs are of the form 6x-1. IF 6x-1 is not Prime then
6x-1 = (6n-1)(6m+1) has non-trivial Integer solutions for all 3 PC Key values x, n, m.

Let z = 6x-1 = (6n-1) . (6m+1)
z=(5 + 6b1) . (7 + 6d1), by Lemma 1. ie, if 6n-1= 5-6b then let b1 = -b . Solve for b1 or d1 
= (11 + 6b2) . (7 + 6d1), solve for b2 or d1 
= (11 + 6b2) . (13 + 6d2), solve for b2 or d2 
= ({6a -1} + 6bA ) . ({6c +1} + 6dC ),solve for bA or dC 

Select values for a and b:
{6a -1} and {6c +1} will be fixed, or constant, for selected, fixed, a and b
Let E={6a -1}, F={6c +1}, E and F are Prime Candidates
E.F=6a.6c + 6a -6c -1

6x -1 = (E + 6bA ) . (F + 6dC )
6x -1 = E.F + E.6dC + F.6bA +6bA.6dC 
6x -1 -E.F = E.6dC + F.6bA +6bA.6dC 

6x -1 -6a.6c - 6a +6c +1 = E.6dC + F.6bA +6bA.6dC 
6x -6a.6c - 6a +6c = E.6dC + F.6bA +6bA.6dC 
6(x -6a.c - a +c) = E.6dC + F.6bA +6bA.6dC 

Let k=(x -6a.c - a +c) , k is a constant for fixed a, c
6k = E.6dC + F.6bA +6bA.6dC 
k = E.dC + F.bA +6bA.dC 
    1) k = dC (E +6bA ) + F.bA 

dC=
k−F.bA
E6bA

    2) k = E.dC +bA (F+6dC )

bA=
k−E.dC
F6dC

With this Generalised Factorisation Algorithm:
1) there can be an infinite number of simultaneous equations for the factorisation of a 

number, subject to the values selected for a and c.
2) a and c may be any selected, fixed, Integer values, solve with iterations performed over bA 

and dC 
3) bA and dC may be fixed, solve with iterations performed over a and c

Similar algorithms exist for factoring Additive PCs
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Factoring Additive Prime Candidates
As stated previously, Additive PCs are of the form 6x+1. IF 6x+1 is not Prime then either

1) 6x+1 = (6n-1)(6m-1), or,
2) 6x+1 = (6n+1)(6m+1)
have non-trivial Integer solutions for all 3 PC Key values x, n, m.
In each case we need only solve for one term, n or m, WLOG

Case 1) Product of Subtractive Prime Candidates:
Let z = 6x+1 = (6n-1) . (6m-1)

z=(5 + 6b1) . (5 + 6d1), by Lemma 1. ie, if 6n-1= 5-6b then let b1 = -b . Solve for b1 or d1 
= (11 + 6b2) . (5 + 6d1), solve for b2 or d1 
= (11 + 6b2) . (11 + 6d2), solve for b2 or d2 
= ({6a -1} + 6bA ) . ({6c -1} + 6dC ), solve for bA or dC 

Select values for a and b:
{6a -1} and {6c -1} will be fixed, or constant, for selected, fixed, a and b
Let E={6a -1}, F={6c -1}, E and F are Prime Candidates
E.F=6a.6c - 6a -6c +1

6x +1 = (E + 6bA ) . (F + 6dC )
6x +1 = E.F + E.6dC + F.6bA +6bA.6dC 
6x +1 -E.F = E.6dC + F.6bA +6bA.6dC 

6x +1 -6a.6c + 6a +6c -1 = E.6dC + F.6bA +6bA.6dC 
6x -6a.6c +6a +6c = E.6dC + F.6bA +6bA.6dC 
6(x -6a.c +a +c) = E.6dC + F.6bA +6bA.6dC 

Let k=(x -6a.c +a +c) , k is a constant for fixed a, c
6k = E.6dC + F.6bA +6bA.6dC 
k = E.dC + F.bA +6bA.dC 
    1) k = dC (E +6bA ) + F.bA 

dC=
k−F.bA
E6bA

    2) k = E.dC +bA (F+6dC )

bA=
k−E.dC
F6dC

Case 2) Product of Additive Prime Candidates:
Let z = 6x+1 = (6n+1) . (6m+1)

z=(7 + 6b1) . (7 + 6d1), by Lemma 1. ie, if 6n+1= 7-6b then let b1 = -b . Solve for b1 or d1 
= (13 + 6b2) . (7 + 6d1), solve for b2 or d1 
= (13 + 6b2) . (13 + 6d2), solve for b2 or d2 
= ({6a +1} + 6bA ) . ({6c +1} + 6dC ), solve for bA or dC 

Select values for a and b:
{6a +1} and {6c +1} will be fixed, or constant, for selected, fixed, a and b
Let E={6a +1}, F={6c +1}, E and F are Prime Candidates
E.F=6a.6c +6a +6c +1

6x +1 = (E + 6bA ) . (F + 6dC )
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6x +1 = E.F + E.6dC + F.6bA +6bA.6dC 
6x +1 -E.F = E.6dC + F.6bA +6bA.6dC 

6x +1 -6a.6c -6a -6c -1 = E.6dC + F.6bA +6bA.6dC 
6x -6a.6c -6a -6c = E.6dC + F.6bA +6bA.6dC 
6(x -6a.c -a -c) = E.6dC + F.6bA +6bA.6dC 

Let k=(x -6a.c -a -c) , k is a constant for fixed a, c
6k = E.6dC + F.6bA +6bA.6dC 
k = E.dC + F.bA +6bA.dC 
    1) k = dC (E +6bA ) + F.bA 

dC=
k−F.bA
E6bA

    2) k = E.dC +bA (F+6dC )

bA=
k−E.dC
F6dC

By using the same additive structure for the equation of z= ({6a ±1} + 6bA ) . ({6c ±1} + 6dC ) we 
end up with the same two equations across all three cases; factoring a Subtractive PC and both cases 
of factoring an Additive PC.

Alternatively, we could start from
z= ({6a ±1} - 6bA ) . ({6c ±1} + 6dC ), or
z= ({6a ±1} - 6bA ) . ({6c ±1} - 6dC )

and generate similar equations shared across the three cases. Whichever forms of the algorithms one 
used would depend on implementation or research dependencies

Trigonometric Representation of Factoring Algorithms
Though I have not been able to derive any improvements in Factoring, it is interesting to examine an 

equation such as m=
c−n

6n−1 in terms of Trigonometry. Given (c-n) = (6n-1)m, we ar looking for 

the intersection of the constant line y=(c-n) with the line y=(6n-1)m and with c, n, m being integers

y = c-n   intersect   y = (6n-1)m y = c-n   intersect   y = m(6n-1)
x = m x = 6n-1
Slope = 6n-1 Slope = m

Hypoteneuse2 =(c-n)2 + m2 
=c2 -2cn +n2 +m2 

Hypoteneuse2 =(c-n)2 + (6n-1)2 
=c2 -2n +n2 + 36n2 -12n +1
=37n2 -14n +c2 +1

Hypoteneuse2 =m2(6n-1)2 +m2 
=m2 ( (6n-1)2 +1 )
=62.n2m2-12nm2+2m2 

Hypoteneuse2 =m2(6n-1)2 + (6n-1)2 
=(6n-1)2 ( m2 +1 )
=62.n2m2-12nm2+m2 +62.n2-12n +1

Hypoteneuse2 = (c-n)2/Sin(θn)2 
=m2/Cos(θn)2 

Hypoteneuse2 = (c-n)2/Sin(θm)2 
=(6n-1)2/Cos(θm)2 
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Fig 3-1: “Trigonometric Representations of (c-n) = (6n-1)m”

Typically we are only interested in seeking Integer solutions for c, n and m. I am curious to see what 
use, if any, could be made of Real solutions.

All of the other Factorisation algorithms we have studied above may also be interpreted in terms of 
Trigonometric representations.

Author: ©2005 Simon Mark Horvat, StructPoZ_3c2mp1@hotmail.com, Australia.   Document vsn 0.135 Page 22



Section 4:   PC Multiplication Charts  
PC Multiplication charts demonstrate the relationships between PCs, especially when we look at the 
charts in terms of their PC Integer Key values

The difference between (6n-1)x(6m+1) and (6{n+1}-1)x(6m+1) is 6 + 36m = 6(6m+1)
The difference between (6n-1)x(6m+1) and (6n-1)x(6{m+1}+1) is –6 + 36n = 6(6n–1)

Table 4-1: “Subtractive Row x Additive Column PC Multiplication Chart”

The difference between (6n-1)x(6m-1) and (6{n+1}-1)x(6m-1) is –6 + 36m = 6(6m–1)
The difference between (6n-1)x(6m-1) and (6n-1)x(6{m+1}-1) is –6 + 36n = 6(6n–1)

Table 4-2: “Subtractive x Subtractive PC Multiplication Chart”

The difference between (6n+1)x(6m+1) and (6{n+1}+1)x(6m+1) is 6 + 36m = 6(6m+1)
The difference between (6n+1)x(6m+1) and (6n+1)x(6{m+1}+1) is 6 + 36n = 6(6n+1)

Table 4-3: “Additive x Additive PC Multiplication Chart”
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-11 -5 1 7 13 19
-17 187 -102 -66 85 -102 -30 -17 -102 6 -119 -102 42 -221 -102 78 -323 -102 114
-11 121 -66 -66 55 -66 -30 -11 -66 6 -77 -66 42 -143 -66 78 -209 -66 114
-5 55 -30 -66 25 -30 -30 -5 -30 6 -35 -30 42 -65 -30 78 -95 -30 114
1 -11 6 -66 -5 6 -30 1 6 6 7 6 42 13 6 78 19 6 114
7 -77 42 -66 -35 42 -30 7 42 6 49 42 42 91 42 78 133 42 114
13 -143 78 -66 -65 78 -30 13 78 6 91 78 42 169 78 78 247 78 114
19 -209 114 -66 -95 114 -30 19 114 6 133 114 42 247 114 78 361 114 114
25 -275 150 -66 -125 150 -30 25 150 6 175 150 42 325 150 78 475 150 114
31 -341 186 -66 -155 186 -30 31 186 6 217 186 42 403 186 78 589 186 114

-11 -5 1 7 13 19
-25 275 -150 -66 125 -150 -30 -25 -150 6 -175 -150 42 -325 -150 78 -475 -150 114
-19 209 -114 -66 95 -114 -30 -19 -114 6 -133 -114 42 -247 -114 78 -361 -114 114
-13 143 -78 -66 65 -78 -30 -13 -78 6 -91 -78 42 -169 -78 78 -247 -78 114
-7 77 -42 -66 35 -42 -30 -7 -42 6 -49 -42 42 -91 -42 78 -133 -42 114
-1 11 -6 -66 5 -6 -30 -1 -6 6 -7 -6 42 -13 -6 78 -19 -6 114
5 -55 30 -66 -25 30 -30 5 30 6 35 30 42 65 30 78 95 30 114
11 -121 66 -66 -55 66 -30 11 66 6 77 66 42 143 66 78 209 66 114
17 -187 102 -66 -85 102 -30 17 102 6 119 102 42 221 102 78 323 102 114
23 -253 138 -66 -115 138 -30 23 138 6 161 138 42 299 138 78 437 138 114

-13 -7 -1 5 11 17
-25 325 -150 -78 175 -150 -42 25 -150 -6 -125 -150 30 -275 -150 66 -425 -150 102
-19 247 -114 -78 133 -114 -42 19 -114 -6 -95 -114 30 -209 -114 66 -323 -114 102
-13 169 -78 -78 91 -78 -42 13 -78 -6 -65 -78 30 -143 -78 66 -221 -78 102
-7 91 -42 -78 49 -42 -42 7 -42 -6 -35 -42 30 -77 -42 66 -119 -42 102
-1 13 -6 -78 7 -6 -42 1 -6 -6 -5 -6 30 -11 -6 66 -17 -6 102
5 -65 30 -78 -35 30 -42 -5 30 -6 25 30 30 55 30 66 85 30 102
11 -143 66 -78 -77 66 -42 -11 66 -6 55 66 30 121 66 66 187 66 102
17 -221 102 -78 -119 102 -42 -17 102 -6 85 102 30 187 102 66 289 102 102
23 -299 138 -78 -161 138 -42 -23 138 -6 115 138 30 253 138 66 391 138 102



Table 4-4: “Subtractive Row x Additive Column Multiplication Chart in PC Key Values”

Table 4-5: “Subtractive x Subtractive PC Multiplication Chart in PC Key Values”

Table 4-6: “Additive x Additive PC Multiplication Chart in PC Key Values”

Columns in Tables 4-4 and 4-5 have magnitude reflected in PC Key Column 0, with sign not 
reflected
Rows in Tables 4-4 and 4-6 have magnitude reflected in PC Key Row 0, with sign not reflected
Both Rows and Columns are reflected between Tables 4-5 and 4-6, resulting in a 180o rotation 
around the intersection of PC Key Row 0 and Column 0

Calculating the PC Key value at the intersection of Row R with Column C, K±,±(R,C)=K at (R,C)
We shall extend the PC Key function K( r ) st

K±,±(R,C)=K at the intersection of Row R and Column C
in a table of Subtractive (-) or Additive (+) PC Rows multiplied by Columns of Subtractive (-) or 
Additive (+) PCs

Examining Table 4-4
K –,+(0, C) = –C
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-2 -1 0 1 2 3
-4 46 -25 -11 21 -25 -5 -4 -25 1 -29 -25 7 -54 -25 13 -79 -25 19
-3 35 -19 -11 16 -19 -5 -3 -19 1 -22 -19 7 -41 -19 13 -60 -19 19
-2 24 -13 -11 11 -13 -5 -2 -13 1 -15 -13 7 -28 -13 13 -41 -13 19
-1 13 -7 -11 6 -7 -5 -1 -7 1 -8 -7 7 -15 -7 13 -22 -7 19
0 2 -1 -11 1 -1 -5 0 -1 1 -1 -1 7 -2 -1 13 -3 -1 19
1 -9 5 -11 -4 5 -5 1 5 1 6 5 7 11 5 13 16 5 19
2 -20 11 -11 -9 11 -5 2 11 1 13 11 7 24 11 13 35 11 19
3 -31 17 -11 -14 17 -5 3 17 1 20 17 7 37 17 13 54 17 19
4 -42 23 -11 -19 23 -5 4 23 1 27 23 7 50 23 13 73 23 19

-2 -1 0 1 2 3
-4 54 -25 -13 29 -25 -7 4 -25 -1 -21 -25 5 -46 -25 11 -71 -25 17
-3 41 -19 -13 22 -19 -7 3 -19 -1 -16 -19 5 -35 -19 11 -54 -19 17
-2 28 -13 -13 15 -13 -7 2 -13 -1 -11 -13 5 -24 -13 11 -37 -13 17
-1 15 -7 -13 8 -7 -7 1 -7 -1 -6 -7 5 -13 -7 11 -20 -7 17
0 2 -1 -13 1 -1 -7 0 -1 -1 -1 -1 5 -2 -1 11 -3 -1 17
1 -11 5 -13 -6 5 -7 -1 5 -1 4 5 5 9 5 11 14 5 17
2 -24 11 -13 -13 11 -7 -2 11 -1 9 11 5 20 11 11 31 11 17
3 -37 17 -13 -20 17 -7 -3 17 -1 14 17 5 31 17 11 48 17 17
4 -50 23 -13 -27 23 -7 -4 23 -1 19 23 5 42 23 11 65 23 17

-2 -1 0 1 2 3
-4 42 -23 -11 19 -23 -5 -4 -23 1 -27 -23 7 -50 -23 13 -73 -23 19
-3 31 -17 -11 14 -17 -5 -3 -17 1 -20 -17 7 -37 -17 13 -54 -17 19
-2 20 -11 -11 9 -11 -5 -2 -11 1 -13 -11 7 -24 -11 13 -35 -11 19
-1 9 -5 -11 4 -5 -5 -1 -5 1 -6 -5 7 -11 -5 13 -16 -5 19
0 -2 1 -11 -1 1 -5 0 1 1 1 1 7 2 1 13 3 1 19
1 -13 7 -11 -6 7 -5 1 7 1 8 7 7 15 7 13 22 7 19
2 -24 13 -11 -11 13 -5 2 13 1 15 13 7 28 13 13 41 13 19
3 -35 19 -11 -16 19 -5 3 19 1 22 19 7 41 19 13 60 19 19
4 -46 25 -11 -21 25 -5 4 25 1 29 25 7 54 25 13 79 25 19



K –,+(R, 0) = R
K –,+(R, C) = R + ( C * PR

– )
    = –C + ( R * PC

+ )

Examining Table 4-5
K –,–(0, C) = –C
K –,–(R, 0) = –R
K –,–(R, C) = –R + ( C * PR

– )
    = –C + ( R * PC

– )

Examining Table 4-6
K+,+(0, C) = C
K+,+(R, 0) = R
K+,+(R, C) = R + ( C * PR

+ )
    = C + ( R * PC

+ )

Calculating the PC Key value for PC Multiples
Now that we've seen the above charts we shall examine the PC Key value of PC multiples
Case 1: Products of Subtractive PCs
(6n –1) x (6m –1)  =  62nm –6n –6m +1

= 6(6nm –n –m) +1
This is the Additive PC at PC Key Value  6nm –n –m

(6n –1) x (6m –1) x (6q –1)  =  ( 62nm –6n –6m +1 ) x (6q –1)
=  63nmq –62nq –62mq +6q –62nm +6n +6m –1
=  6( 62nmq –6(nm +nq +mq)  +n +m +q) –1

This is the Subtractive PC  at PC Key Value  62nmq –6(nm +nq +mq)  +n +m +q

(6n –1) x (6m –1) x (6q –1) x (6r –1)
=  ( 63nmq –62(nm +nq +mq) +6(n +m +q) –1 ) x (6r –1)
=  64nmqr –63(nmr +nqr +mqr) +62(nr +mr +qr) –6r

–63nmq +62(nm +nq +mq) –6(n +m +q) +1
=  6 {63nmqr –62(nmr +nqr +mqr +nmq)

+6(nr +mr +qr +nm +nq +mq ) –(n +m +q +r) }  +1
This is the Additive PC  at PC Key Value

63nmqr –62(nmr +nqr +mqr +nmq) +6(nr +mr +qr +nm +nq +mq ) –(n +m +q +r)

K( (6n –1) ) = n
K( (6n –1)x(6m–1) ) = 6nm –n –m
K( (6n –1)x(6m–1)x(6q –1) ) =  62nmq –6(nm +nq +mq)  +n +m +q
K( (6n –1)x(6m–1)x(6q –1)x(6r –1) )

=  63nmqr –62(nmr +nqr +mqr +nmq)
+6(nr +mr +qr +nm +nq +mq ) –(n +m +q +r)
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Let Q=∏
i

1

m
6n i−1

K Q =∑
i

1

m
( −1m−i x 6 i−1 x { E in1 , n2 ,... , nm  } )

where Ei (n1, n2, ..., nm ) is the sum of each of the permutations of products of i terms selected from 
m terms, without repetition. The number of products summed by Ei (n1, n2, ..., nm ) for a particular i 

and m is the binomial coefficient m
i   , ie, 

E3 (n1, n2, n3, n4 ) = n1.n2.n3  +  n1.n2.n4  +  n1.n3.n4  +  n2.n3.n4 

Q is an Additive PC for m even, and Subtractive for m odd

Restricting ourselves to Powers of 6n–1
K( (6n –1) ) = n
K( (6n –1)2 ) = 6n2 –2n
K( (6n –1)3 ) = 62n3 –3(6n2 +n)

(6n –1)4 = (6(6n2 –2n) +1) x (6(6n2 –2n) +1)
= 62(6n2 –2n)2  +2x6(6n2 –2n)  +1
= 6( 6(6n2 –2n)2  +2(6n2 –2n) )  +1

Note that this PC Key Value appears to be a polynomial of the form 6x2 +2x,
where x= 6n2 –2n = K( (6n –1)2 ) , which resembles the derivative of 2x3 +x2 

K( (6n –1)4 ) = 6(6n2 –2n)2  +2(6n2 –2n)
= 63n4 –624n3  +62n2 –4n ,   from Product formula for Q, above

Case 2: Products of Additive PCs
(6n +1) x (6m +1)  =  62nm +6n +6m +1

= 6(6nm +n +m) +1
This is the Additive PC at PC Key Value  6nm +n +m

(6n +1) x (6m +1) x (6q +1)  =  ( 62nm +6n +6m +1 ) x (6q +1)
=  63nmq +62nq +62mq +6q +62nm +6n +6m +1
=  6( 62nmq +6(nm +nq +mq)  +n +m +q) +1

This is the Subtractive PC  at PC Key Value  62nmq +6(nm +nq +mq)  +n +m +q

(6n +1) x (6m +1) x (6q +1) x (6r +1)
=  ( 63nmq +62(nm +nq +mq) +6(n +m +q) +1 ) x (6r +1)
=  64nmqr +63(nmr +nqr +mqr) +62(nr +mr +qr) +6r

+63nmq +62(nm +nq +mq) +6(n +m +q) +1
=  6 {63nmqr +62(nmr +nqr +mqr +nmq)

+6(nr +mr +qr +nm +nq +mq ) +(n +m +q +r) }  +1
This is the Additive PC  at PC Key Value

63nmqr +62(nmr +nqr +mqr +nmq) +6(nr +mr +qr +nm +nq +mq ) +(n +m +q +r)
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K( (6n +1) ) = n
K( (6n +1)x(6m+1) ) = 6nm +n +m
K( (6n +1)x(6m+1)x(6q +1) ) =  62nmq +6(nm +nq +mq)  +n +m +q
K( (6n +1)x(6m+1)x(6q +1)x(6r +1) )

=  63nmqr +62(nmr +nqr +mqr +nmq)
+6(nr +mr +qr +nm +nq +mq ) +(n +m +q +r)

Let Q=∏
i

1

m
6n i1

K Q =∑
i

1

m
( 6i−1 x { E in1 , n2 ,... , nm  } )

where Ei (n1, n2, ..., nm ) is as defined for Case 1.
Note that the Additive result in K is the same as for the Subtractive PCs, but with all terms positive

Q is an Additive PC for all cases

Restricting ourselves to Powers of 6n+1
K( (6n +1) ) = n
K( (6n +1)2 ) = 6n2 +2n
K( (6n +1)3 ) = 62n3 +3(6n2 +n)

(6n +1)4 = (6(6n2 +2n) +1) x (6(6n2 +2n) +1)
= 62(6n2 +2n)2  +2x6(6n2 +2n)  +1
= 6( 6(6n2 +2n)2  +2(6n2 +2n) )  +1

Note that this PC Key Value also appears to be a polynomial of the form 6x2 +2x,
but in this case x= 6n2 +2n = K( (6n +1)2 ) , which again resembles the derivative of 2x3 +x2 

K( (6n +1)4 ) = 6(6n2 +2n)2  +2(6n2 +2n)
= 63n4 +624n3  +62n2 +4n ,   from Product formula for Q, above

Case 3: Subtractive by Additive PCs
(6n –1) x (6m +1)  =  62nm +6n –6m –1

= 6(6nm +n –m) –1
This is the Subtractive PC at PC Key Value  6nm +n –m

(6n –1) x (6m –1) x (6q +1)  = (62nm –6n –6m +1) x (6q +1)
= 63nmq –62nq –62mq +6q +62nm –6n –6m +1
= 6(62nmq +6(nm –nq –mq) –n –m +q ) +1

This is the Additive PC at PC Key Value  62nmq +6(nm –nq –mq) –n –m +q

(6n +1) x (6m +1) x (6q –1)  = (62nm +6n +6m +1) x (6q –1)
= 63nmq +62nq +62mq +6q –62nm –6n –6m –1
= 6(62nmq +6(–nm +nq +mq) –n –m +q ) –1

This is the Subtractive PC at PC Key Value  62nmq +6(–nm +nq +mq) –n –m +q
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(6n –1) x (6m –1) x (6q +1) x (6r +1)  =  (63nmq +62nm –62nq –62mq –6n –6m +6q +1)x(6r+1)
= 64nmqr +63nmr –63nqr –63mqr –62nr –62mr +62qr +6r

+63nmq +62nm –62nq –62mq –6n –6m +6q +1
= 64nmqr +63nmq +63nmr –63nqr –63mqr +62nm –62nq –62mq –62nr –62mr +62qr

 –6n –6m +6q +6r +1
= 6(63nmqr +62(nmq +nmr –nqr –mqr) +6(nm –nq –mq –nr –mr +qr) +(–n –m +q +r)) +1
= 6(63nmqr +62(n{m{q +r} –qr} –mqr) +6(n{m –q –r} –m{q +r} +qr) +(–n –m +q +r)) +1

This is the Additive PC at PC Key Value
63nmqr +62(nmq +nmr –nqr –mqr) +6(nm –nq –mq –nr –mr +qr) +(–n –m +q +r)

K( (6n ±1) ) = n
K( (6n –1)x(6m +1) ) = 6nm +n –m
K( (6n –1)x(6m –1)x(6q +1) ) = 62nmq +6nm –6nq –6mq –n –m +q
K( (6n +1)x(6m +1)x(6q –1) ) = 62nmq –6nm +6nq +6mq –n –m +q
K( (6n –1) x (6m –1) x (6q +1) x (6r +1) )

= 63nmqr +62(nmq +nmr –nqr –mqr) +6(nm –nq –mq –nr –mr +qr) +(–n –m +q +r)
= 63nmqr +62(n{m{q +r} –qr} –mqr) +6(n{m –q –r} –m{q +r} +qr) +(–n –m +q +r)
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Section   5: Generalised Prime Lattice Structures  
In the spring of 1972 a chance encounter between Hugh Montgomery and Freeman Dyson lead to 
the discovery of the similarity between “...the distribution function for the differences between the 
non-trivial zeroes of Riemann's Zeta function...” and “...the form factor for the pair correlation of 
eigenvalues of random Hermitian matrices...” [Derbyshire, 2004].

Given the simplicity of the Prime structure I wondered whether what is really occurring here is not a 
strong direct relationship between the Prime structure and Physics, but is instead some sort of 
generic exclusion principle. The Prime Lattice structure itself may be thought of as a kind of 
exclusion structure with Primes only able to occur in the Lattice gaps, and the exclusion principle 
would be the Weave of the Prime Lattice. Structures with some form of indirect “gaps” forming the 
points of interest may demonstrate such similarities.

I considered, “what is it about the Prime structure which gives us Primes ?” Is it that 2x3 “exhausts” 
the products ? What would happen if, in some form of maths, 2x2 is greater than 4, making 4 a 
“Prime” ? On further consideration it is clear that the underlying property of the Prime structure 
itself is in the term “±1”

Definition: The Generalised Prime Lattice Structure

B z ={0}∨{±Pi
ei ,±P j

e j ,... ,±Pk
ek} ,

S  z=z n−1,
A z =z n1,    z , n∈ℤ , z≥0,

If B {z}={0} then
    z=0
else

    z=P i
ei .P j

e j . ... . Pk
ek

where B(z) is the “Prime Base” for this set, and B(z) may be written using the product, ie B(6), or as 
a set of primes, ie B({±2, ±3}) or B({2, 3}).  ±1 is an element of all Generalised Prime Candidate 
sets, zn ±1. It is the result of the cases with z and/or n equal to zero.

The X Base Primes in B z ={0}∨{±Pi
ei ,±P j

e j ,... ,±Pk
ek} , if any, are the first X Primes in B(z) 

in order of size. Note that these “Base Primes in B(z)” are the set {±Pi
ei ,±P j

e j ,... ,±Pk
ek}, and 

not the set {±Pi
1 ,±P j

1 , ... ,±Pk
1} , unless ei=1 for all i, ie, the Base Primes of B(245)=B({5,49}) 

are 5 and 49

Prime PX+i is the ith prime in B(z) following PX , ie, it is the X+ith prime in B(z)

The Primorial of PX+i in B(z) is PZ, X+i# = z . PX+1 . PX+2  . ... . PX+i . I will retain PX+i# as an alternative 
shorthand nomenclature equivalent to “PZ, X+i# in the current Prime Base under consideration

I now term Primes of the form 6n ±1, the “Natural Primes”, or B(6) = B(2, 3) = B(±2, ±3), with the 
set of Base Primes {±2, ±3}. In the Fundamental Theorem of Primes the Prime Base was labelled as 
B = {±2, ±3}. I will retain B as indicating the special case of the Prime Base of the Natural Primes
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The set of Prime Candidates under B(z), {zn ±1}, is closed under multiplication
(z n –1) x (z m –1) = z2nm –zn –zm +1 = z (znm –n –m) +1
(z n –1) x (z m +1) = z2nm +zn –zm –1 = z (znm +n –m) –1
(z n +1) x (z m +1) = z2nm +zn +zm +1 = z (znm +n +m) +1

Note these are generalised forms of the multiplicative equations for the Natural Primes, with z in 
place of 6

(6n –1) x (6m –1) = 62nm –6n –6m +1 = 6 (6nm –n –m) +1
(6n –1) x (6m +1) = 62nm +6n –6m –1 = 6 (6nm +n –m) –1
(6n +1) x (6m +1) = 62nm +6n +6m +1 = 6 (6nm +n +m) +1

{zn ±1} is also closed under division, with sub-factors of form zn ±1 or is itself “Prime in B({z})”, 
meaning that it does not decompose into sub-factors of form zn ±1 other than its own (+)ve or (–)ve 
value and ±1

The PC Key function K(x) is now extended to KZ(x), “the value of n in zn ±1 under B(z)”. I will 
retain K(x) as an alternative shorthand nomenclature equivalent to “KZ(x) in the current Prime Base 
under consideration”

The Inverse PC Key function P±( x ) is extended to PZ
±( x ). Similarly, I will retain P±(x) as an 

alternative shorthand nomenclature equivalent to “PZ
±(x) in the current Prime Base under 

consideration”. I shall also use 
1)   P+ x=z ⌊ x⌋1 , x∈ℝ , x≥0
2)   P – x=z ⌊ x⌋−1 , x∈ℝ , x≥0
1)   P+ x=z ⌈ x⌉1 , x∈ℝ–

2)   P – x=z ⌈ x⌉−1 , x∈ℝ–

With B(z), we are not studying all integers; instead we are investigating the Patterns of the Prime 
Lattice structures formed over the subsets of Subtractive and Additive Prime Candidates under B(z), 
{zn ±1}. Theorem 11 is a corollary to Theorem 9, providing a definition for “Prime PCs in B(z)”

Theorem 11: Prime PCs in B(z)
x = zn ± 1 is a Prime PC in B(z) iff it is not the product of a smaller Prime Candidate in
B(z), x' = zm ± 1, ∀ z,n,m∈ℤ , z0 ,0∣m∣∣n∣

PZ , i is the ith Prime in B(z). The first Primes in B(z) are the prime factors of z. The subsequent B(z) 
Primes are B(z) Prime PCs. I will retain Pi as an alternative shorthand nomenclature equivalent to 
“the ith Prime in the current Prime Base under consideration”, ie, in B(10),

P1=2, P2=5, P3=9, P4=11, ...

Similarly, I will retain Pi
± as alternative shorthand nomenclature equivalent to “the Subtractive, and 

Additive, Prime Candidates with PC Integer Key i, in the current Prime Base under consideration”, 
ie, in B(10), P2

- = 19, P2
+ = 21

There are neither Prime, nor Composite, PCs in B(0) as it only has the 2 PCs, ±1
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All of B(1)'s Primes are the same as B(6)'s Primes, but in B(1):
– There are no Primes in the Prime Base, B(1) = {±1}
– ±2 and ±3 are Prime PCs, not Base Primes
– All Primes are both Subtractive and Additive PCs

y is a Prime PC in B(y -1) and B(y +1) for all Integers y, y>1

“B(z) Prime PC” is an equivalent term to “Prime PC in B(z)”

For example, not counting “1”, the first few (+)ve Prime PCs in B(10) are:
9, 11, 19, 21, 29, 31, 39, 41, 49, 51, 59, 61, 69, 71, 79, 89, 91, 101, 109, 111, 119, 129, ...

Many B(10) Prime PCs are not Natural Primes, ie not Prime in B(6):
9, 21, 39, 49, 51, 69, 91, 111, 119, 129, ...

Many B(10) Prime PCs are not even Prime Candidates in B(6); they are of the form x = 3(2k+1)
9, 21, 39, 51, 69, 111, 129, ...

The first few “Composite Prime Candidates in B(10)” are:
81 = 9x9
99 = 9x11
121 = 11x11
171 = 9x19
189 = 9x21
209 = 11x19
231 = 11x21
261 = 9x29

10n-1 10n 10n+1
… … …
-21 -(2x5)x2 -19
-11 -(2x5) -9
-1 0 1
9 2x5 11
19 2x5x2 21
29 2x5x3 31
39 2x5x4 41
49 2x5x5 51
59 2x5x6 61
69 2x5x7 71
79 2x5x8 9x9
89 2x5x9 91
9x11 2x5x10 101
109 2x5x11 111
119 2x5x12 11x11
129 2x5x13 131
139 2x5x14 141
149 2x5x15 151
159 2x5x16 161
169 2x5x17 9x19
179 2x5x18 181
9x21 2x5x19 191
199 2x5x20 201
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11x19 2x5x21 211
219 2x5x22 221
229 2x5x23 11x21
… … …
889 2x5x89 9x9x11
… … …

There are 15 (+)ve Prime PCs in B(10) before the first B(10) Composite PC, 81 { K10(81)=8 }, then 
2 more B(10) Prime PCs before the next Composite B(10) PC, 99 { K10(99)=10 }, totaling 17 B(10) 
Prime PCs below 99

There are 7 (+)ve Prime PCs in the Natural Primes, B(6) { 5, 7, 11, 13, 17, 19, 23 } before the first 
Composite PC, 25 { K(25)=4 }, then 2 more Primes before the next Composite PC, 35 { K(35)=6 }

Thus, the “Weave” of the Prime Lattice varies depending on the value of “z”. Examining the 
composites formed by set of Prime Candidates under B(z), {zn ±1}:

KZ( (z n –1) x (z m –1) ) = znm –n –m
KZ( (z n –1) x (z m +1) ) = znm +n –m
KZ( (z n +1) x (z m +1) ) = znm +n +m

Many of the properties documented in this paper hold for B(z), ie Factorisation Algorithms in B(z), 
there will be a Prime Number Theorem applicable to each B(z), z>0

For small values of n, or m, the above multiples are affected more by the value of z. As zn ±1 tends 
towards infinity the effect of z decreases and, for z>6, the Density of Primes in Prime Candidates 
under B(z) decreases for the same reason, and in the same manner, as the density of Primes in the 
Prime Candidates of the Natural Primes, B(6)

I also suspect that there might be secondary effects in the weave for B(z) when z is a multiple of 6

Theorem 12: Infinity of “Prime PCs in B(z)”:
There are an infinite number of Prime PCs in B(z), z>0

Proof, by Induction:
Let B(z), z>0, be the Prime Structure under consideration
Add 1 to the product of z with n Primes, Pa , Pb ,... , Pc , under B(z), st no primes appear 
more than once, ie a<>b ∀ n elements

Let  Q=z . Pa  . Pb  .... . Pc1
Q is a B(z) Prime Candidate, with PC Key Pa  . Pb  .... . Pc 
Q mod Pi ≡ Pi1mod Pi ≡ 1 mod Pi ∀ Pi∈{Pa , Pb , ... , Pc}

The factors of Q are Prime Candidates. As Q is not divisible by the n Primes, Pa , Pb ,... , Pc , 
there must be a Prime PC Pd, st Pd|Q, Pd ∉{Pa , Pb ,... , Pc}

Thus, there is always an n+1
th

 Prime PC

Considering the product of this new set of n+1 primes, Pa , Pb ,... , Pc , Pd
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Let  Q '=z .Pa  .Pb  . ... . Pc  .Pd1

Q' is a B(z) Prime Candidate, with PC Key Pa  . Pb  .... . Pc  . Pd 

Q ' mod P i ≡ Pi1mod P i ≡ 1mod Pi ∀Pi∈{Pa , Pb ,... , Pc , Pd }

As Q' is not divisible by the n+1 Primes, Pa , Pb ,... , Pc , Pd , there must be a Prime PC Pe,
st Pe|Q', Pe∉{Pa ,Pb , ... ,Pc ,Pd }

Thus, there is always an n+2
th

 Prime PC

By the Principle of Mathematical Induction, ∀ n, the existence of n Primes implies an n+1th 

Prime PC
Therefore the number of Prime PCs in B(z) is Infinite

If Q=Pd then Q is Prime in B(z)
If Q'=Pe then Q' is Prime in B(z)

Lattice Structures over ℝ
The domain of z in B(z) may be extended in at least two ways to include the Real numbers.

Case 1: Extend the Domain of the “z” term to ℝ
In this extended domain the Real Prime Base, B(r), has an infinite number of members, rn, all of the 
integer powers of the Real number r

B z ={rn},
S  z=r n−1,
A z =r n1,    n∈ℤ , r∈ℝ , r≥0,

Case 2: Extend the Domain of n to ℝ
Another way to extend the domain into the Reals is to extend n into the Reals instead of z. This 
subset is formed by taking a Real number, r0, and all of the Reals an integer displacement from r0 

n={r0 y }, r0∈ℝ , y∈ℤ
Then

B z ={0}∨{±Pi
ei ,±P j

e j ,... ,±P k
ek} ,

S  z=z {r0 y}−1,
A z =z {r0 y }1,    z∈ℤ , z≥0, r0∈ℝ , y∈ℤ

I have not had the opportunity to research these two extended domains. I believe their structures to 
also be lattices, but with sub-lattices spawned between every integer. These sub lattices then 
decrease in value. I am also interested in investigating the possibility that these two structures may 
directly map to each other

Lattice Structures over ℂ
A Gaussian Integer is a Complex number z=a+bi, where a and b are integers. Gaussian Integers can 
be uniquely factored in terms of Gaussian Primes [Weisstein (3)]

A Gaussian Prime is a Gaussian Integer which is only divisible by itself and 1, and by no other 
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Gaussian Integer. [Loy (1)]

Definition: Gaussian primes are Gaussian integers satisfying one of the following properties 
[Weisstein (4)].

1. If both a and b are nonzero then a+bi is a Gaussian prime iff a2 +b2 is a Natural Prime.
2. If a = 0, then bi is a Gaussian prime iff |b| is a Natural Prime and b ≡ 3 (mod 4).
3. If b = 0, then a is a Gaussian prime iff |a| is a Natural Prime and a ≡ 3 (mod 4).

The Natural Primes which are also Gaussian Primes are 3, 7, 11, 19, 23, 31, 43, ... [Sloane 
A002145]. 2 is a Natural prime, but it is not a Gaussian prime because it has Gaussian Integer 
factors,

(1 –i)(1+i) = 1 + 1 = 2

Theorem 13: A Prime Candidate Structure of Gaussian Primes
For Gaussian Prime z = a+bi. If a = 0, or b = 0, then if |z|>3 and the Integer Key Value,
n=K(|z|) is:

- Even, then |z| is a Subtractive Prime, 6n –1, n>1, 
- Odd, then |z| is an Additive Prime, 6n +1, n>0, 

Proof:
z=a+bi
If a=0 then |z|=|b|. If b=0 then |z|=|a|
From points 2 and 3 of the definition of Gaussian Primes,

|z| is a Natural Prime >0 and z ≡ 3 (mod 4)
|z| = 6n ±1, n>=0
= (4+2)n ±1
= 4n +2n ±1

If n=0 then |z|=1 which is not congruent to 3 (mod 4)
Therefore n>0

If |z|'s Integer Key Value n=K(|z|) is even, ie n=2k, k≥0, then
|z| = 4(2k) +2.2k ±1
≡ 0 (mod 4)  ±1 for Gaussian Primes
≡ 3 (mod 4) only for Subtractive Primes, with n>1

If |z|'s Integer Key Value, K(|z|)=n, is odd, ie n=2k+1, k≥0, then
a = 4(2k+1) +2.(2k+1) ±1
= 4(2k+1) +2.2k +2 ±1
≡ 0 (mod 4) +2 ±1
≡ 3 (mod 4) only for Additive Primes, with n>0

Note that Theorem 13 only describes the structure of a subset of the Gaussian Primes. There may be 
more Prime Candidate, or other, types of structures to consider.
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Section 6  : Generalising Euclid's Proof of the Infinitude of Primes  
aka: How the Prime Structure was discovered
In this Section, we examine General Forms of Euclid's Proof of the Infinitude of Primes, and how 
they lead to the discovery of the underlying structure of Primes.

For the sake of clarity refer Appendix A for proofs using these General Forms.

Euclid's Theorem: There are an infinite number of Primes

From Euclid's Proof of the Infinitude of Primes, cf Appendix A:Proof 1, the equation

(1.1) Q=∏
i

1

n
Pi1

can be used to prove that there are an infinite number of Primes, as Q is indivisible by Pi for all i = 1 
to n. Thus ∃ prime Pk where Pk|Q,  st  Pk ≠ Pi ∀ i , i=1 to n,  Pn<Pk≤Q,  n<k

If Q=Pk then Q is Prime

It holds from equation 1.1 that:
(1.2) Q mod Pn # ≡ 1mod Pn#

(1.3) Q mod Pi ≡ Pi1mod Pi ≡ 1mod Pi ∀ Pi ,1≤i≤n

which also imply that there is a n+1th Prime

It follows that the Corollary equation
(2.1) Q '=Pn #−1 , n≥1

can also be used to prove that there are an infinite number of Primes, refer Appendix A:Proof 2, on 
the grounds that Q' is indivisible by Pi for all i = 1 to n, ie 

(2.2) Q ' mod Pn# ≡ Pn#−1mod Pn# ≡ −1mod Pn #

(2.3) Q ' mod P i ≡ Pi−1mod P i ≡ −1 mod P i ∀ Pi ,1≤i≤n

For the purpose of clarity, we shall work with an abreviated notation for the General Forms of 
Euclid's Proof and its Corollary, always taking care to note the respective use of “+” and “-” terms

Equations 1.1 and 2.1 generalise to the abbreviated form, Equation 3, refer Appendix A:Proof 3
(3) Let  Q±=Pn#±1 , 1≤ n

Substitute “Pn+1” for “1” in Equation 3
(4) Q±=Pn#±Pn1 , 1≤ n

As Q± is not divisible by P2, ... Pn, Pn+1, then Equation 4⇒∃ Primes Pj, Pk, st  Pj|Q-, Pk|Q+, 
Pn+1<Pj,Pk,  n+1<j,k

Substituting “Pm#/Pn#” for “Pn+1” in Equation 4.1
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(5.1) Q±=Pn#±
Pm#
Pn# ,  1≤ n≤m

⇒∃ Primes Pj, Pk, st Pj|Q-, Pk|Q+,  Pm<Pj,Pk,  m<j,k

In practice Equation 5.1 appears to be a Prime Number Pair Generator, returning both (+)ve and (-)
ve Primes. On further investigation this may be found to fail for some input domains, if so, I feel 
that there may yet be restrictions applicable to the input domain which would generate an infinite 
range of Primes.

As an aside, Equation 5.1 can be restricted to positive Primes,

(5.2) Q±=∣Pn#±
Pm#
Pn# ∣ ,  1≤ n≤m

Another aside, if m=n then equation 5.1 collapses to Equation 3

(5.3) Q±=Pn#±
Pn#
Pn#

 =  Pn#±1 ,  1≤n=m

It was not until after preliminary release of this paper that I discovered 13# +1 = 30,031 =59 x 509

Then, for i=1 to n, include primes Pi as factors to either the LHS or RHS term of Equation 5.2, but 
not both,

(6) Q±=∏
i

1

n
Pi

E i±∏
i

1

n
P i

1−Ei  ,  Ei ∈{0,1},  1≤ n

⇒∃ Primes Pj, Pk, st Pj|Q-, Pk|Q+,  Pn<Pj,Pk,  n<j,k

Note: Equation 3 is a Special Case of Equation 6, with Ei = 1 ∀ i≥1

While we can continue to generalise the equations, Equation 6 does not generate only Primes
Q± = 21 . 31 .51 . 70 . 111±20 . 30 . 50 .71. 110

= 330±7
= {323 , 337}
= {Composite =17 x19 , Prime}

If we then raise primes Pi to the powers, mi,

(7) Q±=∏
i

1

n
Pi

mi Ei±∏
i

1

n
P i

mi 1−Ei  , 0mi , m i∈ℤ ,   Ei ∈{0,1},  1≤ n

⇒∃ Primes Pj, Pk, st Pj|Q-, Pk|Q+,  Pn<Pj,Pk,  n<j,k
Equation 7 also generates Composites

Q± = 22 . 31 . 51 .70 . 111±20 .30 . 50 . 71 .110

= 660±7
= {653 , 667}
= {Prime , Composite =23 x 29}

Allow mi to equal 0

(8) Q±=∏
i

1

n
Pi

mi Ei±∏
i

1

n
P i

mi 1−Ei  , 0≤mi , m i∈ℤ ,   Ei ∈{0,1},  1≤ n

⇒∃ Primes Pj, Pk, st Pj|Q-, Pk|Q+,  Pn<Pj,Pk,  n<j,k

Author: ©2005 Simon Mark Horvat, StructPoZ_3c2mp1@hotmail.com, Australia.   Document vsn 0.135 Page 36



Equation 8 has a side-effect in that, in some cases, it is a factorisation algorithm in reverse. This is 
because mi may equal 0, for some i, which therefore effectively removes prime Pi from the equation. 

Prime Pi  may then become a factor of Q± 
Q± = 20 .30 .51 .71 . 110±20 .30 .50 . 70 .111

= 35±11
= {24 , 46}
= {Composite =23 x3 , Composite =2 x 23}

All primes appeared to have solutions satisfying the form of Equation 8, but Equation 8 also 
generates Composites

At this stage of my investigations I lacked sufficient knowledge of the Primes to prove the 
conditions under which Equations 1.1 through 5.1 may generate only Primes and was unaware of 
the existence of the Lattice Structure.

Given the Hypothesis that Equation 5.1 is a Prime Number Generator, or may have restricted input 
which generates an infinite range of Primes, why does scrambling the same primes over both the 
Left and Right hand terms generate both Primes and Composites in Equation 6 ?

It was my attempts to answer this question which lead to the discovery of the structure of Primes. 
Due to software limitations, and pen and paper, I was mostly working with small primes as the 
domain, ie Pi=2 to 11. This work had the numbers 2 through 11 swapping sides in equations 5.1 and 
6. I also noticed that separating 2 and 3 between the left and right hand terms within equation 6 
could generate Composites as well as Primes. This lead me from Equation 6 to Equations 7 and 8

= 21 . 30 . 51 . 71 . 111 .130±20 . 31 .50 . 70 . 110 .131

= 770±39
= {731 , 809}
= {Composite =17 x 43 , Prime}

Expressing Equation 5.1 in Function Set Notation, and including P0
± =1 in our domain

(9.1) m , n = Q±=Pn#±
Pm #
Pn # ,  0≤ n≤m

(9.2) m , n={Pn#
Pm#
Pn#

, Pn#−
Pm#
Pn#

} ,  0≤ n≤m

When considering a single parameter, m, define m as the set collecting m , n
(9.3) m={{m , m} , {m ,m−1} , ... , {m , 1}} ,  0≤n≤m
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Results of Equation 9.3
ρ(0) 2 0

ρ(1) 3 1 3 -1

ρ(2) 7 5 5 -1 7 -5

ρ(3) 31 29 11 1 17 -13 31 -29

ρ(4) 211 209 37 23 41 -29 107 -103 211 -209

ρ(5) 2311 2309 221 199 107 -47 391 -379 1157 -1153 2311 -2309

ρ(6) 30031 30029 2323 2297 353 67 1031 -971 5011 -4999 15017 -15013 30031 -30029

Due to my interest in products of 2 and 3 I noticed that there were relationships with multiples of 6
ρ(0) 2 0

ρ(1) 3 6.0+1

ρ(2) 6+1 6-1 6-1 6.0-1 6.1+1 -6.1+1

ρ(3) 6.5+1 6.5-1 6.2-1 1 6.3-1 -6.2-1 6.5+1 -6.5+1

ρ(4) 6.35+1 6.35-1 6.6+1 6.4-1 6.7-1 -6.5+1 6.18-1 -6*17-1 6.35+1 -6.35+1

ρ(5) 6.385+1 6.385-1 6.37-1 6.33+1 6.18-1 -6.8+1 6*65+1 -6.63-1 6.193-1 -6.192-1 6.385+1 -6.385+1

ρ(6) 6.5005+1 6.5005-1 6.387+1 6.383-1 6*59-1 6.11+1 6.172-1 -6.162+1 6.835+1 -6.833-1 6.2503-1 -6.2502-1 6.5005+1 -6.5005+1

Note:
ρ(0,0) = {Prime = 2, Composite = 0}

Midway point of ρ(m, m)+ and ρ(m, m)- = 2 x midway point of ρ(m, 1)+ and |ρ(m, 1)- |, m>1
ie, 6n = 2.(3n), for some n
ρ(m, m)=6n ± 1, ρ(m, 1)=2 ± 3n, ρ(m, 0)=1 ± 6n for m>1
ρ(m, 2)=6 ± n, ρ(m, 3)=6.5 ± n/5



From here it was clear that a sampled range of small Primes, other than 2 and 3, appeared to be of 
the form

(9.4) m , n = Q±=6
Pn #
P2 #

±
Pm #
Pn # ,  2≤ n≤m

(9.5) m , m = Q±=6
Pm#
P2#

±1 ,  2≤m

At this stage I went to the Internet to check what was known about “6n” and “Primes”

I found a number of websites with proofs that all primes greater than 3 are of the form 6n±1 
[Caldwell] [Hui] [Loy (2)]. I realised that it was actually the case that all primes OTHER than 2 and 
3 are of the form 6n±1; as I was considering both “1” and negative integers as Prime solutions to my 
Equations.

I asked myself “what about the 6n±1 numbers that aren't Prime ?”

To answer that question I drew up Table 1-1: “Integers modulo 6”
and discovered the structure underlying Prime numbers

I then proceeded to document this research into Generalising Euclid's Proof. I realised that the 
Prime structure could also be separately derived from First Principles. I felt that would be a clearer 
approach for presenting this research and moved this section on Generalising Euclid's Proof towards 
the end of this paper.

At this stage I am right back where I started from before I discovered the Prime Lattice. I am still 
left with the unproven Hypothesis of Symmetric Primes; which many will recognise is actually a 
generalised form of the Twin Primes Hypothesis.

Hypothesis 1: Symmetric Primes

m , n =Pn #±
Pm#
Pn#

, 1≤n≤m, n , m∈ℤ

generates an infinite number of Primes, an infinite subset of which are pairs of Primes 
symmetric about Pn#

Some of the results of ρ(m,n) which are not Prime.
2# -1 = 1 Neither Prime nor Composite
3# -5 = 1 Neither Prime nor Composite
13# +1 = 30,031 =59 x 509 Composite

Thus, Hypothesis 1 was the original form of Prime Structure which I generalised to Hypothesis 2 
and finally simplified to the Fundamental Theorem of Primes and the Prime Lattice structure

Hypothesis 2: Symmetric Prime Structure
All Natural Primes may be expressed in the form

Q±=−1m .∏
i

1

n
P i

E i±∏
i

1

n
Pi

1−E i     ,  m , Ei∈{0,1},1≤n ,n∈ℤ
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cf Hypothesis 2 with Equation 6, above, or Appendix A: Proof 6 of Euclid's Theorem

Hypotheses 1 and 2 are generalised logical steps from Theorems 3 and 4 in the same nature of 
exhausting all Primes, and exhaust the missing displacements of Theorem 6 as Theorem 6 was 
restricted to a displaqcement of ±1.

For the purposes of clarity we shall ignore the factor of -1m , for the moment
n=1, Q± = 1, 3, -1, 3

n=2, Q± = 5, 7, 1, 5, -1, 5, -5, 7
n=3,

LHS RHS Q- Q+ 
30 1 29 31
15 2 13 17
10 3 7 13
6 5 1 11
5 6 -1 11
3 10 -7 13
2 15 -13 17
1 30 -29 31

n=4,
LHS RHS Q- Q+ 
210 1 209 211
105 2 103 107
70 3 67 73
42 5 37 47
30 7 23 37
35 6 29 41
21 10 11 31
14 15 -1 29
15 14 1 29
10 21 -11 31
6 35 -29 41
7 30 -23 37
5 42 -37 47
3 70 -67 73
2 105 -103 107
1 210 -209 211

Note that the Binomial equation controls the results of this equation

Hypothesis 3: Symmetric Primes in B(z)

Z m , n =Pn#±
Pm #
Pn#

, X ≤n≤m, n ,m∈ℤ ,  X is thenumber of BasePrimes∈B z 

generates an infinite number of B(z) Primes, an infinite subset of which are pairs of B(z) 
Primes symmetric about Pn#
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Hypothesis 4: Symmetric Integers
All Integers may be expressed in the form

Q±=∏
i

1

n
Pi

mi Ei±∏
i

1

n
P i

mi 1−Ei  , 0≤mi , m i∈ℤ ,   Ei ∈{0,1},  1≤ n
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Section 7  : Symmetric Prime Lattices  
In this Section, we examine Symmetric Prime Lattices, refer Figure 7-1: "Symmetries of {6n ±1} 
over [-31, 343]". and state an hypothesis in terms of Prime Lattice theory which is equivalent to the 
Symmetric Primes Hypothesis

It appears that the validity of the Symmetric Primes Hypothesis is dependent on the weave of the 
Prime Structure and the resultant location of the Prime Holes.

Figure 7-1 shows that every pattern of Composite strands has a cycle of length “6 x Product of the 
strands” and 180o Rotational Symmetry repeated at half of this cycle length, starting from 0 K. ie, a 
pair of Composite strands zi=6ni-1 and zj=6nj+1 have a cycle of length 6ninj, or ninj K, and repeated 
180o Rotational Symmetry at every 3ninj, =(ninj)/2 K, starting from 0 K. The cycle and symmetry 
length properties hold regardless of the number of strands involved.

The Symmetries shown in Figure 7-1 were discovered as part of this investigation. The weave 
“pattern” of these symmetries still hold when transformed by a factor of 6.

In Figure 7-1, from left to right, the graphs are Composite strands of:

Strand(s) Cycle Length Points of Symmetry
13 13 K 6.5n K
25 25 K 12.5n K
5, 7 35 K  (=6x35 =210) 17.5n K  (=3x35n =105n)
5,11 55 K 27.5n K
5,13 65 K 32.5n K
7,11 77 K 38.5n K
5,17 85 K 42.5n K
7,13 91 K 45.5n K
7,17 119 K 59.5n K
7,19 133 K 66.5n K
11,13 143 K 71.5n K
5,7,11 385 K 192.5n K
17,19,23,25 185,725 K 92,862.5n K

Table 7-1: “Symmetries of {6n ± 1}”
n∈ℤ

These symmetries hold for all B(z), for Integer values of z, with z being the size of unit K. I have 
not investigated these symmetries yet in terms of Real z
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Expressing the Symmetric Primes Hypothesis in terms of Prime Lattice Theory

m ,n =6
Pn#
P2#

±
Pm#
Pn# ,  2≤ n≤m

m ,n =Pn #±∏
i

n1
m

Pi ,  2≤ n≤m

ρ(m, n) is a Prime PC distance from Pn# only when m=n+1
1) If m=n then ρ(m, n) = Pn# + 1, 1 is a PC, but considered neither Prime nor Composite

2) If m=n+1 then ρ(m, n) = Pn# + Pn+1 , a Prime PC displacement from Pn#

3) If m>n+1 then m , n =Pn #±∏
i

n1
m

Pi , a Composite Prime Candidate displacement 

of Pd
±, where Pd

±=∏
i

n1
m

Pi

The Symmetric Primes Hypothesis is equivalent to transforming every Prime Candidate strand by a 
factor of 6 and then adding or subtracting Prime Candidate multiples, resulting in Prime Candidates. 
An infinite number of these resulting Prime Candidates will themselves be Primes, and an infinite 
number of these Prime PCs will form pairs of Primes symmetric about the point of displacement, 
Pn#

Equivalently: There exist an infinite number of ρ(m, n) st
Pj ∤ (Pn# ± Pm#/Pn#) ,  for all Pj  st  Pn < Pj < (Pn# ± Pm#/Pn#)

Due to Pd
± having a sliding symmetrical cycle of length 6Pd

± = Pd
± K, the effect of this displacement 

on the shape of the strand of  Pd
± is to displace the shape by only Pn# mod 6Pd

± 

Thus we are left with an open hypothesis which is a restatement of the Symmetric Primes 
Hypothesis in terms of the Prime Lattice Structure and, if proved, would also prove the Symmetric 
Primes Hypothesis
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Appendix A: General Forms of Euclid's Proof of the Infinitude of Primes
Euclid's Theorem: There are an infinite number of Primes

Definition: Pi is the ith Prime, P1=2, P2=3, P3=5, P4=7, ...

Proof 1a of Euclid's Theorem, by Contradiction:
Assume there are only n Primes. Add 1 to the product of all n primes

(1a.1) Let  Q=∏
i

1

n
Pi1

(1a.2) Q mod Pn # ≡ 1mod Pn#

(1a.3) Q mod Pi ≡ Pi1mod Pi ≡ 1mod Pi ∀ Pi ,1≤i≤n

As Q>1 and not divisible by the Primes P1, ... Pn, there must be a Prime Pk, st Pk|Q, Pn<Pk≤Q, n<k

Thus, there is always an n+1
th

 Prime
Contradiction
Therefore the number of Primes is Infinite

If Q=Pk then Q is Prime

Proof 1b of Euclid's Theorem, by Induction:
Add 1 to the product of n primes, Pa , Pb ,... , Pc , st no primes appear more than once, ie a<>b ∀ n 
elements

(1b.1) Let  Q=Pa . Pb . ... . P c1

(1b.2) Q mod Pi ≡ Pi1mod Pi ≡ 1 mod Pi ∀ Pi∈{Pa , Pb , ... , Pc}

As Q is not divisible by the n Primes, Pa , Pb ,... , Pc , there must be a Prime Pd,
st Pd|Q, Pd ∉{Pa , Pb ,... , Pc}

Thus, there is always an n+1
th

 Prime

By considering the product of this new set of n+1 primes, Pa , Pb ,... , Pc , Pd

(1b.3) Let  Q '=Pa .Pb . ... . Pc .Pd1

(1b.4) Q ' mod P i ≡ Pi1mod P i ≡ 1mod Pi ∀Pi∈{Pa , Pb ,... , Pc , Pd }

As Q' is not divisible by the n+1 Primes, Pa , Pb ,... , Pc , Pd , there must be a Prime Pe,
st Pe|Q', Pe∉{Pa , Pb , ... , Pc , Pd }
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Thus, there is always an n+2
th

 Prime

By the Principle of Mathematical Induction, ∀ n, the existence of n Primes implies an n+1th Prime 
Therefore the number of Primes is Infinite

If Q=Pd then Q is Prime
If Q'=Pe then Q' is Prime

Corollary to Proof 1 - Proof 2 of Euclid's Theorem:
Assume there are only n Primes, n≥1. Subtract 1 from the product of all n primes

(2.1) Let  Q '=Pn #−1

As Q' is not divisible by the Primes P1, P2, ... Pn, there must be a Prime Pj, st Pj|Q', Pn<Pj≤Q, n<j

Thus, there is always an n+1
th

 Prime
Contradiction
Therefore the number of Primes is Infinite

If Q'=Pj then Q' is Prime

It also holds from equation 2.1 that:
(2.2) Q ' mod Pn# ≡ Pn#−1mod Pn# ≡ −1mod Pn #

(2.3) Q ' mod P i ≡ Pi−1mod P i ≡ −1 mod P i ∀ Pi ,1≤i≤n

Lemma 1
Let P be Prime, then gcd(P, a) = |P| or 1 &

(P,a)=1  iff  P∤a
(P,a)=|P|  iff  P|a

Each of 2.2 and 2.3 also show that there must be a Prime Pj, st Pj|Q', Pn<Pj≤Q', n<j

Abbreviated Form: The First Generalised Form of the Euclidean Proof:
As per Section 1 of this paper, for the purpose of brevity, we shall work with an abreviated notation 
for Euclid's Proof and its Corollary, always taking care to note the respective use of “+” and “-” 
terms

Proof 3 of Euclid's Theorem - Proofs 1 and 2 combined:
Assume there are only n Primes, n≥1. Add { Q+ }, or subtract {Q– }, 1 to the product of all n primes

(3.1) Let  Q±=Pn#±1
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As Q- and Q+ are not divisible by the Primes P1, P2, ... Pn, there must be Primes Pj,Pk 
st Pj|Q-,  Pk|Q+,  Pn<Pj, Pn<Pk,  n<j, n<k

GCD( Pj, Pk )=1

Thus, there is always an n+1
th

 Prime. If n≥2 then  there is also always an n+2
th

 Prime
Contradiction
Therefore the number of Primes is Infinite

If Q- = Pj then Q- is Prime. If Q+ = Pk then Q+ is Prime.

It also holds from equation 3.1 that:
(3.2) Q±mod Pn# ≡ Pn #±1mod Pn # ≡ ±1mod Pn #

(3.3) Q± mod Pi ≡ Pi±1mod Pi ≡ ±1mod Pi ∀Pi ,1≤i≤n

Proof 4 of Euclid's Theorem:
(Substituting “Pn+1” for “1” in Equation 3.1)
WLOG, assume there are only n+1 Primes. Add, or subtract, prime Pn+1 to the product of all n 
primes

(4.1) Let  Q±=Pn#±Pn1

As Q±
is not divisible by P1, P2, ... Pn, Pn+1 (4.1)⇒∃ Primes Pj, Pk, st  Pj|Q

-
, Pk|Q

+
,  Pj,Pk>Pn+1, 

j,k>n+1

Thus, there is always an n+1
th

 Prime. If n≥2 then  there is also always an n+2
th

 Prime
Contradiction
Therefore the number of Primes is Infinite

If Q- = Pj then Q- is Prime. If Q+ = Pk then Q+ is Prime.

It also holds from equation 4.1 that:
(4.2) Q± mod Pn# ≡ Pn #±Pn1mod Pn# ≡ ±Pn1 mod Pn#≠0

(4.3) Q±mod Pi ≡ Pi±Pn1mod Pi ≡ ±Pn1mod Pi≠0 ∀Pi , 1≤i≤n

Proof 5 of Euclid's Theorem:
(Substituting “Pn+m#/Pn#” for “Pn+1” in Equation 4.1)
WLOG, assume there are only n+m Primes. Add, or subtract, prime “Pn+m#/Pn#” to the product of 
all n primes
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(5.1) Q±=Pn#±
Pnm#
Pn# , m≥0

⇒∃ Primes Pj, Pk, st Pj|Q
-
, Pk|Q

+
,

Pn+m<Pj,  Pn+m<Pk,  n+m<j,  n+m<k

Thus, there is always an n+1
th

 Prime. If n≥2 then  there is also always an n+2
th

 Prime
Contradiction
Therefore the number of Primes is Infinite

Proof 6 of Euclid's Theorem:
Assume there are only n Primes, n≥1. Then, ∀ i, i=1 to n, include primes Pi as factors to either the 
LHS or RHS term, but not both, ie

(6) Q±=∏
i

1

n
Pi

Ei±∏
i

1

n
Pi

1−Ei  , E i∈{0, 1}

⇒∃ Primes Pj, Pk, st Pj|Q
-
, Pk|Q

+
,

Pn<Pj,  Pn<Pk,  n<j,  n<k

Thus, there is always an n+1
th

 Prime. If n≥2 then  there is also always an n+2
th

 Prime
Contradiction
Therefore the number of Primes is Infinite

Proof 7 of Euclid's Theorem:
Assume there are only n Primes. ∀ i, i=1 to n, include exponents, mi, of primes Pi as factors to 
either the LHS or RHS term, but not both, ie

(7) Q=∏
i

1

n
Pi

mi Ei±∏
i

1

n
P i

m i1−E i  , mi0 , mi∈ℤ , E i∈{0, 1}

⇒∃ Primes Pj, Pk, st Pj|Q
-
, Pk|Q

+
,

Pn<Pj,  Pn<Pk,  n<j,  n<k

Thus, there is always an n+1
th

 and an n+2
th

 Prime
Contradiction
Therefore the number of Primes is Infinite
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Appendix B: Factorisation Algorithms

solna=398075086424064937397125500550386491199064362342526708406385189575946388957261768583317
solnb=472772146107435302536223071973048224632914695302097116459852171130520711256363590397527

print "soln A is Additive (6n+1) = "
(solna-1) % 6
print "soln B is Subtractive (6n-1) = "
(solnb+1) % 6
print "soln A - soln B = "
solna-solnb
print "soln B - soln A = "
solnb-solna
print "\n"

z=188198812920607963838697239461650439807163563379417382700763356422988859715234665485319060606
504743045317388011303396716199692321205734031879550656996221305168759307650257059
print "z = \n"
z

print "length(z)="
length(z)

print "\n"
print "z mod 6 = "
z%6
print "z mod 3 = "
z%3
print "z mod 2 = "
z%2

print "\n"
c=z+1
print "(z+1) mod 6 = "
print c%6
print "    [ <== Should be 0]\n\n"

sqrtz=sqrt(z)
print "sqrt(z) = "
sqrtz
print "z-(sqrt(z)^2) = "
z-(sqrtz*sqrtz)
print "z-({sqrt(z)+1}^2) = "
print z-((sqrtz+1)*(sqrtz+1))
print "    [ <== Should be (-)ve]\n\n"

sqrt6c=sqrt(c)
print "sqrt(6c) = "
sqrt6c
print "(z+1)-(sqrt(6c)^2) = "
(z+1)-(sqrt6c*sqrt6c)
print "(z+1)-({sqrt(6c)+1}^2) = "
print (z+1)-((sqrt6c+1)*(sqrt6c+1))
print "    [ <== Should be (-)ve]\n\n"

c=c/6
print "c = (z+1) / 6 = "
c
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sqrtc=sqrt(c)
print "sqrt(c) = "
sqrtc
print "c-(sqrt(c)^2) = "
c-(sqrtc*sqrtc)
print "c-({sqrt(c)+1}^2) = "
print c-((sqrtc+1)*(sqrtc+1))
print "    [ <== Should be (-)ve]\n\n"

sqrtcon6=sqrt(c/6)
print "sqrt(c/6) = "
sqrtcon6
print "(c/6)-(sqrt(c/6)^2) = "
(c/6)-(sqrtcon6*sqrtcon6)
print "(c/6)-({sqrt(c/6)+1}^2) = "
print (c/6)-((sqrtcon6+1)*(sqrtcon6+1))
print "    [ <== Should be (-)ve]\n\n"

print "(6*sqrtc-1)-solna="
(6*sqrtc-1)-solna
print "(6*sqrtcon6-1)-solna="
(6*sqrtcon6-1)-solna
print "(6*sqrtcon6-1)-solnb="
(6*sqrtcon6-1)-solnb

                                                                                                                                               

D:>bc RSA_576.txt
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
soln A is Additive (6n+1) = 0
soln B is Subtractive (6n-1) = 0
soln A - soln B = -7469705968337036513909757142266173343385033295957\
0408053466981554574322299101821814210
soln B - soln A = 74697059683370365139097571422661733433850332959570\
408053466981554574322299101821814210

z =
18819881292060796383869723946165043980716356337941738270076335642298\
88597152346654853190606065047430453173880113033967161996923212057340\
31879550656996221305168759307650257059
length(z)=174

z mod 6 = 5
z mod 3 = 2
z mod 2 = 1

(z+1) mod 6 = 0    [ <== Should be 0]

sqrt(z) = 4338188710978442023896232853369682906054694563015589302934\
45695571862781832679867424802
z-(sqrt(z)^2) = 3514425664418662733196236564715131185886733761648047\
90573372343299501858924404525517855
z-({sqrt(z)+1}^2) = -51619517575382213145962291420242346262226553643\
8313070013519047844223704740955209331750    [ <== Should be (-)ve]

sqrt(6c) = 433818871097844202389623285336968290605469456301558930293\
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445695571862781832679867424802
(z+1)-(sqrt(6c)^2) = 35144256644186627331962365647151311858867337616\
4804790573372343299501858924404525517856
(z+1)-({sqrt(6c)+1}^2) = -516195175753822131459622914202423462622265\
536438313070013519047844223704740955209331749    [ <== Should be (-)\
ve]

c = (z+1) / 6 = 3136646882010132730644953991027507330119392722990289\
71167938927371648099525391109142198434344174571742195646685505661193\
66615386867622338646591776166036884194793217941709510
sqrt(c) = 1771058124966578484160094122632612707348581868347683836848\
02725764108106372034872588743
c-(sqrt(c)^2) = 2712168873721387478805842713511528336589052596988024\
53610468934629160556555579531389461
c-({sqrt(c)+1}^2) = -82994737621176948951434553175369707810811113970\
734313759136516899055656188490213788026    [ <== Should be (-)ve]

sqrt(c/6) = 72303145182974033731603880889494715100911576050259821715\
574282595310463638779977904133
(c/6)-(sqrt(c/6)^2) = 1061664870895727747899058316435349845397896951\
82702117581137164107622336488495651803229
(c/6)-({sqrt(c/6)+1}^2) = -38439803276375292673301930135454445662033\
456917817525850011401082998590789064304005038    [ <== Should be (-)\
ve]

(6*sqrtc-1)-solna=66455978855588215309893097302918113321008475866608\
3593702431165008702249274947466949140
(6*sqrtcon6-1)-solna=35743784673779264992497784786581799406405093959\
032221887060505995916392875418098841480
(6*sqrtcon6-1)-solnb=-3895327500959110014659978663607993402744523900\
0538186166406475558657929423683722972730
quit
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